felines™

$3.00 September 1983 Volume 1V, No. 4 (ISSN 02479-2575, USPS 597-830)

by
/?obe
: rt o
RSP " ~Qhp
> Fghl | ¢
- '/‘ -
) o \r - e = ,/” ""ﬁ.?) \
) ‘k‘ o > i T e ey
=20 ol g o
v\\‘ ‘
s o,

Lifeline

The Software Magazine

September 1983

Volume IV, Number 4

Publisher: Edward H. Currie
Editor in Chief: Susan E. Sawyer
Production Manager: Kate Gartner
Technical Editors: Al Bloch

Art Director: Kate Gartner
Typographer: Rosalee Feibish

Dealer/Customer Service Manager: Crescent R. Varrone
Circulation Manager: Trina McDonald

Advertising Manager: Carolann Abrams

New Versions Editor: Lee Ramos

Printing Consultant: Sid Robkoff/E&S Graphics

Cover: Kate Gartner

Editorial

1 Electromagnetic Wastelands
And The Twilight Zone
Edward H. Currie

Features

2 GRAPHSUB: A PL/I-80 Graphics Package
Robert S. Cahn

12 V-SPOOL Reviewed
Robert P. VanNatta

14 CP+ and Simplifile — Programs To
Operate The Operating Systems
Charles E. Sherman

17 A Review Of MemoPlan
Marilyn Harper

21 Computers And Organizations:
Technology And Administrative Groups—
Part One
Jon Wettingfeld

24 PL/I From The Top Down —
Chapter Two: FUNCTIONS
Bruce H. Hunter

Software Notes

31 Tips And Techniques
John S. Coggeshall

Product Status Reports

32 New Products

33 New Books

34 New Versions
Miscellaneous

11 Crossword Puzzle

23 Oops!

31 Letter To The Editor

35 Users Group Corner

36 Oops!

36 Change of Address

Copyright © 1983, by Lifelines Publishing Corporation. No portion of this
publication may be reproduced without the written permission of the
publisher. The single issue price is $3.00 for copies sent to destinations
in the U.S., Canada, or Mexico. The single issue price for copies sent to
all other countries is $4.30. All checks should be made payable to Lifelines
Publishing Corporation. Foreign checks must be in U.S. dollars, drawn on
a U.S. bank; checks, money order, VISA, and MasterCard are acceptable.
All orders must be pre-paid. Please send all correspondence to the
Publisher at the address below.

Lifelines (ISSN 0279-2575,USPS 597-830) is published monthly at a subscrip-
tion price of $24 for twelve issues, when destined for the U.S. Canada,
or Mexico, $50 when destined for any other country. Second-class postage
at New York, New York; additional entry paid at Smithtown, New York.
POSTMASTER, please send changes of address to Lifelines Publishing Cor-
poration, 1651 Third Avenue, New York, NY 10028.

Program names are generally TMs of their authors or owners. The CP/M User Group is not affiliated v
Digital Research, Inc.

Lifelines—TM Lifelines Publishing Corp.

The Software Magazine—TM Lifelines Publishing Corp.

SB-80, SB-86—TMs Lifeboat Associates

CP/M and CP/M-86 reg. TMs, PLI-80, PLI-86, MP/M, TMs of Digital Research Inc.

BASIC-80, MBASIC, FORTRAN 80—TMs Microsoft, Inc.

WordMaster & WordStar—TMs MicroPro International Corp.

PMATE—TMs Phoenix Software Associates, Ltd.

Z80—TM Zilog Corp.

Ediforial

Electromagnetic Wastelands

by Edward H. Currie

Hardware manufacturers are begin-
ning to realize that the market ac-
cessible to them is decreasing in size
in the 16-bit arena. They are com-
forted by the knowledge that while
the percentage of the market which
they may capture is decreasing, the
absolute numbers are in fact increas-
ing due to the phenomenal growth of
this market.

Apple is undoubtedly paying close
attention to IBM with respect to the
anticipated announcement regar-
ding the IBM “Peanut.” This machine
has allegedly already been shown to
major accounts and is expected to be
announced perhaps as early as Oc-
tober.

Rumors suggest that this machine is
a stripped-down PC based on the
8088 and supporting MS DOS. Ap-
parently there will be little or no ex-
pansion capability provided, as there
is not to be a bus structure 4 la the
IBM-PC.

The C language is continuing to gain
ascendancy in the microcomputer
celestial hemisphere and we expect
that this trend will continue. Lattice
C is leading the race in the 16-bit
marketplace and Lattice Corporation
is reportedly preparing many new
exciting features.

Those of you interested in an ex-
cellent text editor for 8- and 16-bit
machines should be taking a careful
look at PMATE. A number of issues
of The Software Magazine have includ-
ed features discussing the various
aspect of this excellent product.
Macro of the Month has served as
continual reminder of this, the most
powerful of text editors for micros. If
you haven’t checked this one out, do
80... ¢

Interest in UNIX continues to grow
and those of you aspiring to author-
ship of applications packages should
give serious consideration to writing
them in Lattice C (using PMATE, of
course). New C books seem to be ap-

And The Twilight Zone

pearing weekly and we will review
them as they appear. Fortunately, C
is remaining relatively “pure” and is
implemented on virtually everything
from the mighty Cray 1 down to the
lowest of microcomputers. C has a
number of important attributes and
the interest in C is growing faster
than anyone might have imagined.
So get busy, order a copy of your
favorite C compiler, some books, a
good text editor and start studying.
You'll be up and running in no time.
There are also a number of C user
groups that we will review in future
articles which are rapidly developing
alarge base of useful C programs.

If you are trying to crack the
“database barrier” take a look at
“Everyman’s Database Primer,” by
Robert A. Byers. This book is pub-
lished by Ashton-Tate and is an ex-
cellent treatment of databases and
database management. The text is
self-contained and exactly what you
have been looking for if you are in-
terested in,or involved with DBASE II
or other data base managers. The text
is extremely lucid and well illustrated
with many examples.

Another interesting text is a book by
Tom DeMarco entitled, “Controlling
Software = Projects—Management,
Measurement and Estimation.” This
book, published by Yourdon Press,
New York, is an interesting text for
anyone charged with the respon-
sibility of managing software pro-
jects. Perhaps not in the class of “The
Mythical Man-Month,” it nonethe-
less treats the general subject of soft-
ware project management in an en-
lightened way. This is a fairly tech-
nical treatment and probably of little
interest to the casual observer.

Sadly, it appears that computerized
bulletin boards have entered a state
of arrested development. There is lit-
tle new software currently being sup-
ported by most of them and they
seem to remain in a supersaturated
state in terms of being able to access

Lifelines/The Software Magazine, Volume IV, Number 4

them. It was to be expected that the
few CBBSs would never be able to
meet the needs of the masses. Still,
it's sad that we have reached this
state so quickly.

Installation and maintenance of
these facilities is done on a no-charge
basis and represents a considerable
investment in time and dollars on the
part of the Sysops. Perhaps these
bulletin board systems are not unlike
the Pony Express of old. They served
us well for a brief period but their
memory has far more significance
than their actual contribution. A
salute to those who served us all so
well if only for a short time. “Out, out
brief candle.”

It's not difficult to understand why
ham radio is suffering such lack of in-
terest these days. One has only to
listen to life as we know it on the two
meter bands to recognize that the
totality of all transmissions in this
band probably has less value than
the energy required to propagate
such nonsense.

If only the FCC would recognize the
contribution that micros offer this
important area of technology. The
computer bulletin boards of the
future could broadcast continuously
to all those within range and offer a
wealth of public domain software to
one and all. Furthermore this would
breathe new life into the interfacing
of micros with ham equipment and
perhaps even breed a hybrid of in-
dividuals skilled in micro and ham
radio technology. But alas, if relief
ever comes it will undoubtedly be too
little and too late. Ham bands will
continue to be the domain of the sol-
itary individual who has little to say
of lasting value but an incredible
amount of time in which to say it.
Just another part of the elec-
tromagnetic wasteland shared by
television and other forms of com-
munication. If two meters is any in-
dication, better we should all stick to
microcomputers. ... [l

= Q.

GRAPHSUEB is a software package which was written to
produce a high speed and high resolution graphics
system. While a 256 by 256 system may be fine for anima-
tion, I am more interested in static images and the in-
terplay between mathematics and the fine arts. This is an
application which needs more resolution. Until recently, I
had to use a graphics terminal but with the advent of in-
telligent graphics boards, it has become possible to do
such work on a microcomputer. Using Digital Research’s
PL/I-80 and Scion’s Microangelo MA-512 board I am able
to move virtually all my work off the mainframe. This arti-
cle will describe the software package and the graphics
subsystem it uses. Since the software is modular you can
modify this package to run on any CP/M system with a
graphics sub-system by changing the lower level mod-
ules. Everybody has a personal definition of high resolu-
tion and I will not add my own. For my work, the Scion
MA-512 Microangleo (MA) Board was adequate. It fit into
asingle slot on my S-100 system and made no demands on
the host other than power and the use of two I/O ports.
The resolution was 512 by 480 or about one-half the
resolution of a Tek scope in either direction.

The board communicates with the host through a status
port and a communication port. These are factory set to
F1H and FOH but can be jumpered to other addresses. The
communications to the Microangelo use a conventional
handshaking arrangement. If the host desires to write to
the MA it inputs the status port and checks the low bit to
see if the transmit buffer is empty. When the buffer is clear
the host outputs the data to the data port.

MA to host communications are similar. The MA comes
with a variety of operating systems which are installed in
ROM. The minimal system, Screenware Pak I, provides:

1. Clear Screen

2. Draw a Point

3. Draw a Vector

4. Draw an ASCII Character

5. Draw Crosshairs,
etc. An upgraded operating system called Screenware Pak
IT adds:

1. Relative Coordinates

2. Circle Generation

3. AreaFlood

4. Macro Facilities.

I opted for the enhanced system with the extra com-
mands. The commands for the MA system are download-
ed from the host as a series of bytes. A command byte has
the high bit set and is interpreted by the MA operating
system which is stored in 6K of ROM. An example is the
following short program written in Microsoft BASIC. The
program will clear the screen and then draw a circle of
radius 50 screen units with center at (240,256).

Listing 1
05 DEFINT X,1
10 X=136:GOSUB 10000:REM THIS IS THE CLEAR

SCREEN CODE
2

GRAPHSUB:

A PL/I-80 Graphics Package

=

20 X=141:GOSUB 10000:REM 141 MEANS DRAW A
POINT

30 X=01:GOSUB 10000:REM THIS IS THE HIGH
BYTE OF THE X COOR

40 X=00:GOSUB 10000:REM THIS IS THE LOW BYTE
256 =1+256+0

50 X=00:GOSUB 10000:REM 240 = 0*256 + 240

60 X =240:GOSUB 10000

70 X =201:GOSUB 10000:DRAW A CIRCLE

80 X=50:GOSUB 10000:REM SEND THE RADIUS

90 STOP

10000 I=INP(241)

10010 IF I<>2*INT(I/2) THEN 10000:REM LSB=1IF

10020 OUT 241,X
10030 RETURN
20000 END

Though programming in BASIC is quick and easy to
debug, the lack of local variables will quickly turn alonger
program into a hopeless muddle. Further, the code ex-
ecutes too slowly. Even compiled BASIC is not fast
enough for an application which generates thousands of
plotting commands. Since I have plenty of memory on my
system, my thoughts turned to PL/I.

As many benchmarks have shown, PL/I runs very fast.
The catch is that the compilations are time consuming and
the object modules are large.

The size problem is deceptive. PL/I-80 object modules are
large because the full library is 41K. A single GET LIST will
usually increase the size of the generated .COM file by
10K. There are dozens of library procedures needed for
entering a simple YES or NO at run time. Yet, after the
library procedures are added, one may add lots and lots of
further I/O to a PL/I-80 program with only a modest in-
crease in the size of the resulting .COM file. Tests showed
that any program I use can be compiled in 35Kbytes or
fewer.

The organization of GRAPHSUB

GRAPHSUB is a PL/I library which can be linked to any
PL/I program. One must add the statement:

%INCLUDE B:GRAPHSUB.DCL;

to the main program if you are keeping your program files
on disk B:. A listing of GRAPHSUB.DCL is shown below:
Listing 2
DCL RESET ENTRY,

CLEAR ENTRY,

POINTA ENTRY (FIXED,FIXED),

VECTA ENTRY (FIXED,FIXED),

MOVEA ENTRY (FIXED,FIXED),

CIRCLA ENTRY (FIXED,FIXED,FIXED),

CHROUT ENTRY (CHAR(1)),

LABEL ENTRY (FLOAT,FLOAT,

CHAR(40 VARYING)),

Lifelines/The Software Magazine, September 1983

INIT ENTRY (FLOAT, FLOAT, FLOAT,FLOAT),
WINDOW ENTRY

(FLOAT, FLOAT, FLOAT, FLOAT),
CLIP ENTRY

(FLOAT, FLOAT, FLOAT, FLOAT, FIXED),
SCALE ENTRY

(FLOAT, FLOAT, FIXED, FIXED,FIXED),
VECTOR ENTRY (FLOAT, FLOAT),
POINT ENTRY (FLOAT, FLOAT),
MOVE ENTRY (FLOAT,FLOAT),
GRID ENTRY,
ARRSCL ENTRY (FIXED),
PLOT ENTRY (FIXED),
PLOT2 ENTRY (FIXED),

(X(300),Y(300)) STATIC EXTERNAL FLOAT;

Since all the procedures are external to the program using
them, they must all be declared with the ENTRY attribute.
If you are going to use only one or two routines you can
declare them individually instead of including the file.
The routines in GRAPHSUB are a hierarchically organiz-
ed set of procedures. They are illustrated below:

Level 3 Higher level graphics commands
This level contains the routines GRID,
ARRSCL, PLOT and PLOT2 allowing ar-
ray graphing using only one procedure
call.

Level 2 Real world coordinate systems graphics.
These routines create graphics using real
world coordinates. Includes the procedures
MOVE, POINT, VECTOR, CLIP, INIT,
SCALE, WINDOW, LABEL.

Level 1 Absolute or screen graphics
This level will output graphics in screen coor-
dinates. The routines include CHROUT, VEC-
TA, POINTA, and MOVEA.

Level 0 Communication with the Graphics Sub System
These are the lowest level of routine which
handles the actual communication with the MA
board. These routines are called most often and
are most effective when written in assembler.
These routines are entirely device dependent.
They include RESET, CLEAR, OUTBYT, OUT-
INT, and OUTCOO. Usually only RESET and
CLEAR are called directly.

If it is desired to adapt GRAPHSUB to another system on-
ly level 0 and level 1 routines need be rewritten. The
higher level procedures are usable on any system with
vector primitives.

The procedures are linked into a PL/I library in the order
shown. The linker in PL/I-80 can search alibrary using the
S option lpoking for undefined entry points.

Example:
LINK B:PROGRAM, B:GRAPHSUB|S],

The linker will link the file B:PROGRAM.REL with the
needed modules from the PL/I library and then search
B:GRAPHSUB for any undefined entry points. It makes a
single pass. If the procedure MOVE (world coordinates
move) calls the procedure MOVEA (absolute move) it is
imperative that the module MOVE appear in the library
before MOVEA.

Lifelines/The Software Magazine, Volume IV, Number 4

Use of GRAPHSUB

For a listing of GRAPHSUB you should refer to appendix
A. There are 21 entry points and depending on your ver-
sion of PL/I-80 it may take 20 separate compilations and
assemblies to create all the needed .REL files. The .REL
files will then need to be linked into a library with the high
level routines first and the lower level routines last. It is
only necessary to call the routine PLOT, however, to make
conventional graphs.

Listing 3
PLTTST: PROC OPTIONS (MAIN);
%INCLUDE 'B:GRAPHSUB.DCL;

DCL (1,]) FLOAT,
U FLOAT,
V FLOAT,
N FIXED;

DO J=1TO 10;

/* ON EACH PASS THE PLOTTING WINDOW IS
SMALLER THAN BEFORE WITH A LARGER AND
LARGER BORDER AROUND THE PLOT */

CALL WINDOW(10*],511-10*],10*],479-10*]);
N=0;

DOT=0TO35BY .1
X(N+1)=I;
Y(N+1)=I";
N=N+1;
END;

CALL PLOT(N);

/* PLOT THE ARRAYS X(1), . . ., X(N)
AND Y(1),...,Y(N) */

N=0;

DO I1=1TO 347 BY .25;
X(N+1)=I;
Y(N+1)=1/1;
N=N+1;
END;

CALL PLOT2(N);

[* PLOT2 PLOTS THE X AND Y ARRAYS IN THE AREA
DETERMINED BY THE FIRST PLOT */

N=0;

DOI = 0TO 35BY .10;
X(N+1)=I;
Y(N +1)=EXP(l);
N=N+1;
END;

CALL PLOT2(N);
END;
END PLITST;

This program plots the function y =x*x by storing the data

inthe arrays X and Y and then calling the procedure PLOT.

PLOT first calls the routine ARRSCL to determine the size

of the window needed to display the data. It then erases

the screen using CLEAR and then draws coordinate axes

using GRID. The axes are labeled by using OUTCHR to »
3

output the coordinates converted to ASCII. The plotting
cursor is MOVEd to the location X(1),Y(1) and then all
subsequent points are connected using the procedure
VECTOR. After plotting the first function the subsequent
functions are plotted using PLOT2. This plot will be
superimposed on the first one so as to display several
separate functions which have the same range on the X
axes.

At the other end of GRAPHSUB are the routines which
handle communications with the MA board. These rou-
tines generally output either an 8-bit integer or a 16-bit in-
teger to the board. Generally 8-bit integers will be thought
of as unsigned numbers between 0 and 255. Characters
will be treated as integers between 0 and 127. PL/I general-
ly passes to a subprocedure not an argument but the ad-
dress of the argument. This is call by reference.

Example.

The PL/I instruction CALL OUTBYT(X) will generate a
CALL instruction. The DE register is a pointer to the ad-
dress of the byte X to be output. OUTBYT then loads the
address of X into the HL register and finally using indirect
addressing loads the argument.

The OUTBYT and OUTINT procedures use a common
argument loading routine. The names are declared public
so that the linker will be able to recognize them. Names
may be longer than six characters but only the first six
characters can be used externally. If two programs were
named OUTBYTE and OUTBYTES the PL/I library
manager will refer to both as OUTBYT. Be careful, if you
add new modules to the library, to observe this
convention.

OUTBYT will output the lower 8 bits of an integer to the
MA board without change. OUTINT performs a range
check, however. Since it is used to transmit absolute coor-
dinates it will change negative integers to 0 and integers
over 511 to 511. The RESET procedure is the only other
assembly language routine. It resets the MA by outputs to
the command/status port.

In between level 3 and level 0 most of the work is done.
The procedure WINDOW will define the part of the plot-
ting screen which is to be used for graphics.

Example
To confine the graphics to the top of the page we would

CALL WINDOW(0,511,240,479); .

To leave a boundry of 50 screen units around the boundry
we would
CALL WINDOW(50,461,50,429); .

Once the graphics window has been defined we must
designate what world coordinates are to be used in the
window. This is done by calling INIT. INIT(-6,6;5,5) will
allow plotting data with -6 <= x<=6and -5<=y<=5
inside the plotting window. The other routines allow the
plotting of points, lines, vectors, circles, and text.

Variable usage

Once established, the screen limits are passed to the
various procedures using EXTERNAL STATIC variables.
This storage class is much like the FORTRAN COMMON
variables. Such variables are global among all procedures
where they are declared. The WINDOW procedure uses

4

the variables XMIN and XMAX for the X coordinate and
YMIN to YMAX for the Y coordinate. The INIT routine
uses the fixed variables SXMIN, SXMAX, SYMIN and
SYMAX. The transfer of arrays to the higher level graph-
ing procedures is a problem. PL/I-80 does not allow arrays
to be passed to procedures using the declaration,

DCL X(*) FLOAT;

one of the more pleasant features of full PL/I. One solu-
tion is to use EXTERNAL STATIC arrays. GRAPHSUB.
DCL declares the real arrays X and Y and uses them to
pass data plotting procedures. This is adequate for most
purposes.

Another approach is to play tricks with pointers. A
pointer is used in PL/I based storage to refer indirectly to
data. Pointers can be qualified by a statement such as,

P —>X(1);

but cannot be incremented or decremented. If the array is
stored linearly, however, then the address of each subse-
quent element of the array is a fixed offset from the ad-
dress of its predecessor. If X is an array of type float,

X(1),X(2),X(@3), - - -, X(N),

then the address of X(2) is four greater than the address of
X(1), the address of X(3) is eight greater than address of
X(1), etc. Itis then possible to pass to a procedure a pointer
to the begining of the array and the size of the array and
have the data retrieved.

Results

We illustrate the use of GRAPHSUB by an example taken
from the fine arts. A conformal mapping is a transforma-
tion of the plane which preserves angles but changes
distances. These functions have been a mainstay of elec-
trical engineering. We will use functions that are express-
ed in complex notation. Instead of thinking of a point as
having coordinates (x,y) we think of this point as

z =X + iy

with i being the square root of —1. It is possible to add,
subtract, multiply, and divide complex numbers.

Listing 4
CONFRM: PROC OPTIONS(MAIN);
%INCLUDE 'B:GRAPHSUB.DCL;

DCL XX(1000) FLOAT; /*THESE ARE THE
COORDINATES BEFORE MAPPING */

DCL YY(1000) FLOAT;

DCL FLAG(1000) FIXED BINARY (7); /* A POINT OR
A DRAW */

DCL (UV) FLOAT; /*THESE ARE THE RETURNED
COMPLEX COORDINATES */

DCL (X1,Y1) FLOAT;/* WORKING VARIABLES */

DCL (XOFEYOFESIZE) FLOAT; /* THESE GOVERN
IMAGE SIZE AND LOC */

DCL (L]) FIXED; /* WORKING VARIABLES */

DCL AGAIN FIXED STATIC INITIAL(1);

DCL NAME CHAR(13) VARYING;/* NAME OF THE
FILE */

DCL (DATA)FILE;

ON UNDEFINEDFILE(DATA) BEGIN;
Lifelines/The Software Magazine, September 1983

PUT SKIP LIST('THAT FILE IS NOT ON THE
DISK’);

GO TO QUERY;

END;

QUERY: PUT SKIP LIST (WHAT IS THE NAME OF
THE DATA FILE?);

GET LIST (NAME);

OPEN FILE (DATA) STREAM INPUT TITLE(NAME) ;

| * % *** MAIN PROCEDURE * * * * * |

I1=i;
ON ENDFILE (DATA) GOTO NEXT;

DO WHILE (AGAIN *= 0);
GET FILE(DATA)
EDIT(FLAG(I),XX(I),YY(I))(F(1),E(6),E(6));
I=1+1;
ENI;;

NEXT:CLOSE FILE(DATA);
DO WHILE (AGAIN 1=0);

ON ERROR(1) BEGIN;
PUT SKIP LIST('DATA NOT CORRECT TYPE');
GO TO PARAM;
END;

PARAM: PUT LIST (WHAT SIZE FOR THIS IMAGE?');
GET LIST (SIZE);

PUT LIST (WHAT X AND Y OFFSETS?);

GET LIST (XOFEYOFF);

CALL WINDOW(0,480,0,480);
CALL INIT(-8,8, -88);
CALL CLEAR;

DOJ=1TOI;
X1=XX(J)*SIZE + XOFF;
Y1=YY(J)*SIZE + YOFF;
CALL TRANS(XLYLUV);
IF FLAG(J)=0 THEN CALL POINT(UV);
ELSE CALL VECTOR(UV);
END;

PUT LIST('DO YOU WISH TO DRAW ANOTHER IM-
AGE? 1=YES 0=NO");
GET LIST(AGAIN);
END;
TRANS: PROCEDURE (R,S,TW);
DCL (R,S,TW,DEN) FLOAT;
DEN = R*R+5*S;
IF DEN<.0001 THEN DO;
T=100;
W =100;
END;
ELSE DO;
T=R-(S/DEN);
W =S+ (R/DEN);
END;

RETURN;
END TRANS;
END CONFRM;

In Listing 4 the function used is w =z +i/z. The function is
Lifelines/The Software Magazine, Volume IV, Number 4

used to transform a digitized image which is stored on
disk as a sequential file. In Figure 2 you have the result of a
series of these transformations. The “distortions” repre-
sent a new method for looking at space and using per-
spective. The plots are produced as quickly as on a much
larger timesharing system.

PL/I1-80 and Scions board have done the job for me.

APPENDIX
Program Listings

The following listings are referred to in the text.

Depending on your version of PL/I-80 you will have to do
separate compilations and link the result together by the
library manager or you can enclose all of the PL/I pro-
grams in a single dummy program and then link the
assembly language routines.

Listing A.1
PLOT:PROC (N);

DCL N FIXED;

DCL (X(300),Y(300)) EXTERNAL STATIC FLOAT;
DCL | FIXED;

DCL CLEAR ENTRY;

DCL ARRSCL ENTRY (FIXED);

DCL GRID ENTRY;

DCL POINT ENTRY (FLOAT,FLOAT);

DCL VECTOR ENTRY (FLOAT,FLOAT);

IF (N<2 ! N>300) THEN DO;
PUT LIST(ERROR IN PLOT ROUTINE’);
RETURN;
END;

CALL CLEAR;
CALL ARRSCL(N);
CALL GRID;

CALL POINT (X(1)Y(1));

DOI=2TON;
CALL VECTOR (X(1),Y(1);
END;

RETURN;
END PLOT;

Listing A.2
PLOT2:PROC (N);

DCL N FIXED;
DCL (X(300),Y(300)) EXTERNAL STATIC FLOAT;
DCL | FIXED;

DCL POINT ENTRY (FLOAT,FLOAT);
DCL VECTOR ENTRY (FLOAT,FLOAT);

IF (N<2! N>300) THEN DO;
PUT LISTCERROR IN PLOT2 ROUTINE’);
RETURN;
END;

CALL POINT (X(1),Y(1));

DOI=2TON;
CALL VECTOR (X(1),Y()));
END;

RETURN;

END PLOT2; >

(6}

Listing A.3
ARRSCL:PROC (N);

DCL N FIXED;

DCL (X(300),Y(300)) EXTERNAL STATIC FLOAT;

DCL (XMAX,XMIN,YMAX,YMIN) EXTERNAL STATIC FLOAT:
DCL (BT) FLOAT:

DCL (1,J) FIXED;

/* THIS ROUTINE WILL SIZE THE ARRAY */
B =X(1)iT =X(1);

DOI=1TON;
IF (X(I)>T) THEN T =X());
IF (X(1)<B) THEN B = X(l);
END;

XMAX = CEIL(T);
XMIN = FLOOR(B);

B=Y()T=Y();

DOI = 1TON;
IF (Y()>T) THEN T = Y(l);
IF (Y(1)<B) THEN B = Y(l);
END;

YMAX = CEIL(T);
YMIN = FLOOR(B);

RETURN;
END ARRSCL;

Listing A.4
GRID: PROCEDURE;

DCL VECTOR ENTRY (FLOAT,FLOAT);
DCL MOVE ENTRY (FLOAT,FLOAT);
DCL CHROUT ENTRY (CHAR(1));

DCL (XMIN,XMAX,YMIN,YMAX) FLOAT EXTERNAL STATIC;

DCL (X,Y) FLOAT:

DCL C CHAR(9) VARYING;
DCL LETTER CHAR(1);
DCL (1,J) FIXED;

DO X = XMIN TO XMAX;
CALL MOVE(X.YMIN);
CALL VECTOR (X.YMAX);
END;

DOY = YMIN TO YMAX;
CALL MOVE(XMIN,Y);
CALL VECTOR(XMAX.Y);
END;

DO X = XMIN TO XMAX;

CALL MOVE(XYMIN);

I=X;

C=CHARACTER(l);

LETTER="0";J=1;

DO WHILE (J<=LENGTH(C) & LETTER 1= " .");
LETTER = SUBSTR(C,J,1);
IF(LETTER t ="' ") THEN CALL
CHROUT(LETTER);

J=J+1;
END;
END;

DO Y =YMIN TO YMAX;
CALL MOVE(XMIN,Y);
I=X:
C=CHARACTER(l);
LETTER="0";J=1;
DO WHILE (J <= LENGTH(C) & LETTER d=ru

LETTER = SUBSTR(C,J,1);
IF (LETTER 1 = ’*) THEN CALL CHROUT(LETTER);

J=J+1,;
END;
END;
RETURN;
END GRID;
Listing A.5
VECTOR:PROC (X,Y);
I* TEST OF PROBLEM GET RID OF CLIP */
DCL (X,Y,XC,YC) FLOAT;

DCL (IX,1Y,FLAG,PLOT) FIXED;
DCL (XPREVYPREV) EXTERNAL STATIC FLOAT;
DCL PVFLAG EXTERNAL STATIC FIXED;

DCL SCALE ENTRY (FLOAT,FLOAT,FIXED,FIXED,FIXED);
DCL VECTA ENTRY (FIXED,FIXED);
DCL CLIP ENTRY (FLOAT,FLOAT,FLOAT,FLOAT,FIXED);

/* THIS IS WHERE THE WORK GETS DONE */

CALL SCALE(XY, X, IY,FLAG);
CALL VECTA(IX,IY);

XPREV=X; YPREV=Y;
RETURN;
END VECTOR;

Listing A.6
POINT: PROC (X)Y);

DCL (X,Y) FLOAT:

DCL (IX,1Y) FIXED:

DCL FLAG FIXED;

DCL (XPREV)YPREV) FLOAT STATIC EXTERNAL;
DCL PVFLAG FIXED STATIC EXTERNAL;

DCL MOVEA ENTRY(FIXED,FIXED);
CALL SCALE(XY,IX,IY,FLAG);

IF (FLAG = 0) THEN DO;
CALL POINTA(IX,IY);
PVFLAG =0;

END;
ELSE PVFLAG=1;

XPREV=X; YPREV =Y,
RETURN;

END POINT;

Listing A.7
MOVE: PROC (X)Y);

DCL (X,Y) FLOAT;

DCL (IX,lY,FLAG) FIXED;

DCL (XPREV,YPREV) FLOAT STATIC EXTERNAL,;

DCL PVFLAG FIXED STATIC EXTERNAL:

DCL SCALE ENTRY (FLOAT,FLOAT,FIXED,FIXED,FIXED);
DCL MOVEA ENTRY (FIXED,FIXED);

CALL SCALE(XY,IX,IY,FLAG);

IF (FLAG=0) THEN PVFLAG =0
ELSE PVFLAG =1;

CALL MOVEA(IX,1Y);

XPREV=X; YPREV=Y;
RETURN;

END MOVE;

Lifelines/The Software Magazine, September 1983

Listing A.8
CLIP: PROC (X,Y,XCYC,PLOT);

DCL (X,Y,XC,YC) FLOAT;
DCL (XPREV,YPREV) STATIC FLOAT EXTERNAL;

DCL PVFLAG STATIC FIXED EXTERNAL;
I*PVFLAG =0 PREV POINT INSIDE WINDOW*/

DCL PLOT FIXED;
[*IF PLOT =0 THEN WE PLOT THE POINT ELSE WE OMIT */

DCL (XMIN,XMAX,YMIN,YMAX) STATIC FLOAT EXTERNAL;
DCL (BX,BY) FLOAT:
DCL INFLAG FIXED;

DCL MOVE ENTRY (FLOAT,FLOAT);

IF (X>=XMIN & X< =XMAX & Y>=YMIN & Y<=YMAX)
THEN INFLAG =0; ELSE INFLAG = 1;

PLOT=0

IF (INFLAG =0 & PFVLAG =0) THEN DO;
XC=X;
YC=Y;
RETURN;
END;

If INFLAG =1 & PVFLAG = 1) THEN DO:
XC=X;
YC=Y;
PLOT=1;
RETURN;
END;

IF (INFLAG =1 & PVFLAG =0) THEN DO;
XC=BX;
YC=BY;
PVFLAG = 1; /* SAVE THE INFLAG IN PVFLAG */
RETURN;
END;

IF (INFLAG =0 & PVFLAG = 1) THEN DO;
CALL BOUNDRY(BX,BY);
CALL MOVE(BX,BY);
XC=X;
YC=Y;
PVFLAG=0;
RETURN;
END;

BOUNDRY:PROC (XBYB);

DCL (INX,INY,OUTX,0UTY)FLOAT:
DCL (XBYB) FLOAT:

IF INFLAG =0 THEN DO;
INX=X;
INY.=Y;
OUTX =XPREV;,
OUTY =YPREV;
END;

ELSE DO;
INX =XPREV;
INY =YPREV;
ouUTX=X;
ouUlY.=Y;
END;

IF OUTX<XMIN THEN DO;
YB = OUTY + (XMIN — OUTX)*(INY — OUTY)/(INX — X);
IF YB< = YMAX & YB> = YMIN THEN DO;
XB =XMIN;
RETURN;
END;
END:;

Lifelines/The Software Magazine, Volume IV, Number 4

IF OUTY<YMIN THEN DO;
XB =0UTX + (INX - OUTX)*(YMIN — OUTY)/(INY — OUTY);
|IF XB>=XMIN & XB< =XMAX THEN DO:
YB=YMIN;
RETURN;
END;
END;

IF OUTX>XMAX THEN DO;
YB=INY + (OUTY - INY)*(XMAX - INX)/(OUTX - INX);
IF YB>=YMIN & YB< = YMAX THEN DO;
XM =XMAX;
RETURN;
END;
END;

IF OUTY>YMAX THEN DO;
XB =INX+ (OUTX - INX)*(YMAX — INY)/(OUTY - INY);
IF XB>=XMIN & XB< =XMAX THEN DO;
YB =YMAX;
RETURN;
END;
END;

END BOUNDRY;
END CLIP;

Listing A.9
SCALE:PROC(X,Y,IX,lY,FLAG);

DCL (XMIN,XMAX,YMIN,YMAX) FLOAT STATIC EXTERNAL;
DCL (SXMIN,SXMAX,SYMIN,SYMAX) FLOAT STATIC EXTERNAL;

DCL (X,Y) FLOAT;
DCL (IX,1Y,FLAG)FIXED;

FLAG=0;

IF (X>XMAX) THEN DO;
IX = FIXED(SXMAX);
FLAG=1;
END;
ELSE IF (X<XMIN) THEN DO;
IX =FIXED(SXMIN);
FLAG=1;
END;
ELSE IX = FIXED(SXMIN + (X-XMIN)*(SXMAX-SXMIN)/
(XMAX-XMIN));

IF (Y>YMAX) THEN DO;
1Y = FIXED(SYMAX);
FLAG=1;
END;
ELSE IF (Y<YMIN) THEN DO;
1Y =FFIXED(SYMIN);
FLAG=1;
END;
ELSE IY = FIXED(SYMIN + (Y-YMIN)*(SYMAX-SYMIN)/
(YMAXYMIN));

RETURN;

END SCALE;

Listing A.10

WINDOW:PROC(X1,X2,Y1,Y2);

DCL (SXMIN,SXMAX,SYMIN,SYMAX) FLOAT STATIC EXTERNAL;
DCL (X1,X2,Y1,Y2) FLOAT;

I* X1 AND Y1 ARE THE MINIMA AND X2 AND Y2 THE MAXIMA */

IF (X2<=X1 | X1>500 | X2 <10) THEN DO;
SXMIN=0;
SXMAX =511;
END;

|

ELSE DO;
SXMIN = MAX(0,X1);
SXMAX = MIN(511,X2);
END;

I* WE LIMIT THE SCREEN COORDINATES TO THE PHYSICAL
DIMENSIONS */

IF (Y2<=Y1 | Y1>500 | Y2<10) THEN DO;
SYMIN=0;
SYMAX = 480;
END;
ELSE DO;
SYMIN = MAX(0)Y1);
SYMAX = MIN(Y2,480);
END;

RETURN;
END WINDOW;

Listing A.11
LABEL: PROCEDURE(X,Y, MESAGE);

DCL MOVE ENTRY (FLOAT,FLOAT);
DCL CHROUT ENTRY (CHAR(1));

DCL (X)Y) FLOAT:

DCL MESAGE CHAR(40) VARYING;
DCL LETTER CHAR(1);

DCL (1,J) FIXED;

CALL MOVE(X)Y);

DO | = 1 TO LENGTH(MESAGE);
LETTER = SUBSTR(MESAGE,|,1);
CALL CHROUT(LETTER);
END;

RETURN;
END LABEL;

Listing A.12
CHROUT: PROCEDURE (LETTER);

DCL OUTBYT ENTRY(FIXED(15));
DCL CODE FIXED;
DCL LETTER CHAR(1);

CODE = 152;
CALL OUTBYT(CODE);

CODE = RANK(LETTER);
CALL OUTBYT(CODE);

RETURN;
END CHROUT,

Listing A.13
INIT: PROC (XB,XTYBYT);

DCL (XB,XTYB)YT) FLOAT;
DCL (XMIN,XMAX,YMIN,YMAX) FLOAT STATIC EXTERNAL;

XMIN =XB;
XMAX =XT;
YMIN=YB;
YMAX=YT;

RETURN,;
END INIT;

Listing A.14
VECTA: PROCEDURE (IX,1Y);

DCL OUTBYT ENTRY(FIXED(15));
DCL OUTCOOR ENTRY(FIXED(15),FIXED(15));
DCL (CODE, IX,|Y) FIXED;

CODE = 145;

CALL OUTBYT(CODE);
CALL OUTCOOR(IX,IY);

RETURN;
END VECTA;

Listing A.15
POINTA: PROCEDURE (IX,1Y);

DCL OUTBYT ENTRY(FIXED(15));
DCL OUTCOOR ENTRY(FIXED(15),FIXED(15));
DCL (CODE, IX,|Y) FIXED;

CODE = 141;

CALL OUTBYT(CODE);
CALL OUTCOOR(IX,IY);

RETURN;
END POINTA;

Listing A.16
MOVEA: PROCEDURE (IX,1Y);

DCL OUTBYT ENTRY(FIXED(15));
DCL OUTCOOR ENTRY(FIXED(15),FIXED(15));
DCL (CODE, IX,IY) FIXED;

CODE = 142;

CALL OUTBYT(CODE);
CALL OUTCOOR(IX, IY);
CALL OUTBYT(CODE);
CALL OUTCOOR(IX, IY);

RETURN;
END MOVEA,;

Listing A.17
OUTCOOR: PROCEDURE (IX,1Y);
DCL OUTINT ENTRY/(FIXED(15));

DCL (IX,1Y) FIXED;
CALL OUTINT(IX);
CALL OUTINT(IY);

RETURN;
END OUTCOOR,;

Listing A.18
CLEAR: PROCEDURE;

DCL OUTBYT ENTRY(FIXED(15));
DCL X FIXED;

X =136;
CALL OUTBYT(X);
RETURN;

END CLEAR;

Lifelines/The Software Magazine, September 1983

—

Listing A.19 ;

: PUBLIC OUTBYT
TITLE 'PL/I TO MICROANGELO INTERFACE SUBROUTINES’ 3
; OUTBYT " CALL = =CETP1

; FUNCTION OUTINT(X) X FIXED BINARY. IF X<0 THEN
THE SECOND ROUTINE OUTPUTS A BINARY ; 0I1S OUTPUT

; THE FIRST OF THESE ROUTINES WILL OUTPUT A MoV AC

; BYTE CALL SEND

; THE PARAMETER SHOULD BE A NUMBER RATHER RET

: THAN A BIT STRING :

¢ ONLYTHEF'RSTBYTElspASSEDmTHE R AR R R R e R)
; MICROANGELO

INTEGER WHICH IS NORMALIZED
TO LIE BETWEEN 0 AND 511 WITH ENDS INCLUDED.

AND IF X>511 THEN 511 WILL BE OUTPUT.

: PUBLIC OUTINT
: NEITHER ROUTINE RETURNS ANY DATA TO THE ;
: CALLING PROGRAM OUTINT CALL GETP2
: MOV AB
: TEST1 ANI 80H TEST1 ASKS IF THE
: PARAMETER LOADER SUBS ;NUMBER IS NEGATIVE
; ;IN
GETP1: Jz TEST2 ;2S COMPLEMENT
MOV EM ;LOW HALF LXI B,0000H ;IF IT WAS NEGATIVE
INX H ;LETS MAKE IT O
MOV DM JMP OUTIN2
INX H TEST2 MOV AB ;PUT THE B REG BACK
XCHG :INTHEA
MOV CM ANI 7EH ;IS B>1? IF SO YOU
XCHG ;MUST CLIP
RET Jz OUTIN2 ;IF IT PASSES TEST 2
; LXI BO1FFH ;PUTA511 IN THEBC
] ;REGISTER
. GET AWHOLE 16 BIT NUMBER OUTIN2 MOV AB ;LOAD THE HIGH BYTE
: INA
GETP2: CALL SEND
CALL GETP1 MOV AC ;LOAD IN THE LOW
INX D :BYTE
LDAX D CALL SEND
MOV BA RET ;BACK TO PL/I
RET s
; END
: SENDS THE BYTE IN THE A REGISTER TO THE
: MICROANGELO WHEN IT GETS THE OK. Listing A.20
; , LEAVES THE OTHER REGISTERS UNDISTURBED. TITLE BESETME et
PEAS: :LUSH :f,w ;,SSAYTE;;%?, ?SG'STEH : THIS SUBROUTINE HAS NO PARAMETERS BUT
ANI 1 ;CHECK THE LOW BIT ;
et b i :‘;‘f_ﬁv{ggf Ly 2 PUBLIC RESET
gﬂ? Zz‘,’v RESET MVI Al
s MVI AQ
:'"'ttt"..i."ﬁt't.'t.""‘.i"t"""‘titittt'.i‘..i*‘ OUT 241
RET
: FUNCTION OUTBYT(X) X FIXED BINARY 0<X<255 OR END
: X BIT(8)

Lifelines/The Software Magazine, Volume IV, Number 4 9

Figure 1.

* Simplifile *
Disk Left: 65K
File: 7 of 16

(continued from page 16)

Sort
Exit

Muit
FLst

Current: B Backup:
User: 0

A >Date: 042883
Id: TEXT1

ChgDte

Description

—TEXT1
ARTICLE
ARTICLE2
CURVIT2
CURVIT2
CURVIT2
=> ELGTPRT
LOGO3
HARRIS
NAMES
OLDISK
PIP
PROLOGUE
SALSNDR2
STAT

X

Figure 2.

* Simplifile *
Disk Left: 65K
File: 7 of 16

DID
LLS
AT
CES
DFT
FF

ART
WP
PRN

COM
WP
ART
COM
COM

042883
050183
062183
040183
040183
040183

032583
011583
051283

052783

Simplifile parameters, directory, ID
Simplifile article for Lifelines

Article on The Champion for Ashton-Tate
Updated resume with art config. for Diablo
Updated resume config. for Epson ,
Experiment—config. for Fancy Font & Epson
Preliminary text for book project
Wordprocessor art “NOLO PRESS NEWS”
Portions of fictional work—on Panlantir WP
Address list

Fict—'Ancient Computer Disk Deciphered!”

Fiction—on Palantir WP
Experiment—Word Processor Artwork

Directory utility from Workman & Assoc.

—TEXT1
ARTICLE
ARTICLE2
CURVIT2
CURVIT2
CURVIT2
ELGTPRT
LOGO3
HARRIS
NAMES
OLDISK
PIP
PROLOGUE
SALSNDR2
STAT

X

DID
LLS
AT
CES
DFT
FF

ART
WP
PRN

Current: B Backup: A >Date: 042883
FLst User: 0 Id: TEXT1
Description
042883
050183 | ? = Display File CMD’s
062183 | B = Backup file
040183 | C = Copy file
040183 | E = Erasefile
040183 | G = Goto file
L = Listfile
M = Mark file for Mult
032583 | N = Next screen
011583 | P = Previous screen
051283 | R = Rename file
T = Make this top row
052783 | U = User number copy
V = View file
X = eXecute program
<CTRL>P = List Screen
<ESC> = “escape” or Go to Disk Area

Lifelines/The Software Magazine, September 1983

Crossword Puzzle

by Crescent Varrone

This month we begin our crossword puzzle, which includes
computer jargon, computer companies, and various obscure
words. The solution will appear in October Lifelines.

1 2 3 4 5 6 7 8

Across

1. With 19 Down, large retail dealer of Lifelines.
9. Lasso.

10. Lumberjack’s tool.

12. Tristram’s love.

13. Separate area or div.

14. Yearned.

15. Present for Dad.

16. Bolger’s stuffing (obs. sp.).

17. __ltronix, Canadian retail dealer of Lifelines.

20. Opposite of ACK.

22. Trdmk., for short.

23. Evolutionary operations.

27. D-lysurgic acid.

29.°Crab iy

31. Display attention bits.

34. Lattice.

36. __mein.

37. Trick.

38. Computers store this.

40. Glazier’s diamond.

41. __scan.

Lifelines/The Software Magazine, Volume IV, Number 4

</ \?,
& |4
J || i
(RTINS LOG: 5 pplemenal \ & | o
e ,& d/ | Ay
WE HAVE FAILED To ACkevE ,3’-; A
A SATISFACRY crevT, I Skl 71 ,‘ 13
HAVE AssemeLep ALL i :? k%
DEPPRTMENTAL Hepps 1N ‘rj'v, v
THe BRIEFING Room T 311
Discuss THE PRoBLEM. 4l ")
WE HAVE THE FiNEMEST arane
CompuTERS AND LABS [N THE =3 ’
FLEET, We must g€ ABLE To fogi
ARRIVE AT A solumon . .. o

BlcHT MR Spoe 2

/-——.A - @‘

Down

. High-level list-processing language.
. Fertile place in the desert.
. “..onthe Western _."”

Freemason’s doorkeeper.

. _Zee, Dutch sea-arm.
. 8 homophone.

Number-system base.
Anticipate.

. Movie idol, summer '82.

Siberian goats.

. Dorothy’s Auntie __.

. See 1 Across.

. Jarkes;

. Deum __de Deo vero.

. Corpulent.

. Weakling.

. Ministerial letters.

. This mag.

. —Romeo.

. To start up a system.

. Affirmative, to Zurbaran.
. Method of machine control by digital instruct.

1

Feature

V-SPOOL is an internal print buffer
marketed by CompuView Products
of 1955 Pauline Blvd., Ann Arbor,
Michigan 48103. CompuView is, of
course, better known for its program
editor, VEDIT; but this product
should not be ignored merely be-
cause you might not be a VEDIT user.
I would even question its usefulness
with VEDIT.

V-SPOOL does its thing by loading
into high memory, partitioning off a
portion thereof, and converting it in-
to a printer buffer. The exact amount
is user definable in a range of 2 to 16k.
V-SPOOL also takes an overhead
area of from 500 bytes to 2.5k de-
pending on the method you choose
to load it.

If you have no memory to spare, V-
SPOOL s, of course, not for you; but
under certain circumstances it would
seem to be a most useful product. No
buffering scheme is a cure-all for
generally bad printer performance,
but if conditions are right, substan-
tially improved performance can
result.

Use is easy

One of the most pleasant things
about V-SPOOL is its ease of use. It is
delivered in three files. One is the
utility itself, called SPOOL.COM.
The other files are a configuration
routine (SPOOLIN.COM) and a
spool remover (UNSPOOL.COM).
SPOOLIN can be used to adjust the
default size of the buffer to 2, 4, 8, or
16k. Once you have decided on the
size you want, and have run the con-
figuration program, the buffer can be
loaded in two ways: (1) You can
simply enter “SPOOL,” in which
case the buffer will load and remain
there until you either execute a cold
boot or run ‘UNSPOOL, or (2) you
can load the spooler on the com-
mand line with the program you are
going to run. Thus “SPOOL WORD-
STAR” will load the spooler and ex-
ecute your program called “‘WORD-
STAR.COM'. The trade-off in method
is one of convenience for memory.

12

V-SPOOL Reviewed

-

The permanent loading procedure is
more convenient (load and forget).
Unfortunately it takes 2k extra
overhead compared to the tem-
porary loading method accomplish-
ed by simply including it as the first
command in the command line.

Suggested applications

Most user surveys suggest that the
three top uses for microcomputers
are Spreadsheets, Word Processing,
and Accounting (not necessarily in
that order). If your bag is a spread-
sheet, V-SPOOL is not for you. A
spreadsheet, by its nature, needs all
the memory it can get, and cluttering
up valuable memory with the hope
of improving an occasional printout
would surely be counter-productive.
On the other hand, it is not uncom-
mon to find accounting programs
designed to run in a 48k or 56k
system; if you have one of those, and,
in fact, have a 64k system, you can
likely add V-SPOOL with no adverse
effect on your accounting program
and with a possibly favorable effect
on performance.

When it comes to word processing
programs, the cost-benefit is a little
harder to calculate. An accounting
program will either run (in which
case the spooler is probably useful)
or crash with an out-of-memory er-
ror. By contrast, most word process-
ing programs contain subtle routines
to adjust the size of the text buffer to
match the amount of memory avail-
able. It goes without saying that
larger text buffers are more pleasant
to work with than smaller ones, but
the trade-off is one of degree.

The performance of any word pro-
cessing program will be degraded
somewhat by reduced memory avail-
ability; however, some are affected
more than others. Editors tend to fall
in the class of either being memory
oriented or file oriented. Spellbinder
(by Lexisoft) and Vedit (by Compu-
View) are typical of the memory edi-
tor type. They tend to be small, very
powerful, and very fast. They also

tend to fall apart (at least in perfor-
mance and convenience, if not literal-
ly) when the file gets larger than the
available memory buffer. Of the file-
oriented editors, WordStar and
WordMaster are archetypical. They
are, seemingly, forever grinding on
the disk, but their death, when it
comes, is usually caused by a short-
age of disk space, not memory space.
WordStar will, for example, general-
ly run in a 48k system. The difference
between running it in a 48k system
and a 64k system is for the most part
only that the disk activity is more
frequent.

Enough mumbling! What I am trying
to say is that if you are using a
memory editor, the price of using V-
SPOOL is paid by decreased space
available for your document. With
WordStar, the price is some more
disk grinding, particularly if you are
jumping around in the file alot. With
a double-density, 8-inch floppy sys-
tem, the additional disk activity
would have to be described as mea-
surable, but not noticeable.

Why a Spooler, anyway?

As described above I would charac-
terize V-SPOOL not so much a
spooler as it is a printer buffer. Its
primary usefulness is under cir-
cumstances where you desire to edit
and print at the same time. This im-
plies background printing. However,
presently I shall describe one hard-
ware combination that is'benefited
even if your only desire is to print.
This writer’s experience with back-
ground printing over the years has
been rather dismal. This is essential-
ly because most of the printers that I
have used have required so much
time to get their data, that an effort to
edit and print at the same time usual-
ly resulted in getting neither done.
As an aside, it should be mentioned
that a notable exception to this rule
has been the venerable (and now
somewhat dated) Texas Instruments
Model 810 (TI-810). The TI-810, as
well as some other of the more ex-

Lifelines/The Software Magazine, September 1983

pensive dot matrix printers, has sup-
ported the 9600 baud serial interface
which is seemingly fast enough to
make a background print facility
work even without a buffer!

Anyhow, the point I am trying to
make is that with V-SPOOL the back-
ground print facility of WordStar
becomes viable, even with a slow
printer.

Problems

It seems as if all good things have a
catch somewhere. A spooler, by its
nature, must intercept the printer
output. V-SPOOL assumes that the
printer output is being sent though
the CP/M list device. This implies
that if you are by-passing the CP/M
list device with a custom printer
driver or the WordStar port driver,
you are out of luck. Indeed, Lifeboat
CP/M Version 2.25d, coupled with
WordStar version 3.0, ignore V-
SPOOL even when purportedly in-
stalled to use the list device. On other
programs, Lifeboat CP/M seems to
function normally.

With respect to ATON CP/M version
2.23 (Aton International, 260
Brooklyn Ave., San Jose, CA 95128)
for the TRS 80 Model 11/12/16, I found
that it worked properly (even with
WordStar) in the standard 64k mode
but would not work at all with the
bank-switched 128k version.

V-SPOOL checks out all right under
Pickles and Trout CP/M 2.2e for the
TRS-80. I can also report for the ben-
efit of those of you who are running
TRISOFT CP/M-68k (4102 Avenue G,
Austin, TX 78751), on the Motorola
68000 side of their Model 16; V-
SPOOL works with CP/M-68k as
well. (Someday maybe there will
even be a program or two to run with
CP/M-68k as well.)? The reason that
V-SPOOL works on the TANDY 16 is
not because it is magically a 16-bit
program, but rather because CP/M-
80 controls the I/O for the MC68000
on the Model 16, and V-SPOOL is
logically part of the I/O. Only time
will tell whether history will categor-
ize the Model 16 as a cat or a dog, but
there is something to be said for a
design that plugs an MC68000 into a
Z-80 in such a way that an existing
8-bit operating system can effectively
be made a slave doing faceless tasks
of managing the input and output.

One tasteless software
protection scheme bites
the dust

V-SPOOL is delivered on a standard
8-inch floppy with instructions that
direct you to put the master disk into
drive B: and attempt to load the
spooler, before you go through the
routine of making a backup. I hardly
ever read instructions before I start
playing with anew program that I get
in, so I was never burdened with the
decision of whether to follow those
instructions or not. It was only a few
days later that I began to appreciate
the brilliance of my habit of making a
backup first and playing with the
product later. It seems that the clever
fellows down under (V-SPOOL was
written in Australia) believe that it is
immoral to have more than one oper-
ating system for your computer. Ac-
cordingly, they have jerry-rigged a
mousetrap on V-SPOOL that latches
onto the serial number of the first
version of CP/M that is configured
with it. If you have followed their
setup instructions, this modification
will actually be written back to the
master disk, preventing you from us-
ing this product with any other
operating system. To make a long
story short, it wasn’t very long until
V-SPOOL was accusing me of being
an outright software pirate. It may be
that morals or laws are different in
Australia, but I have never really
understood that it was either im-
moral or illegal to have several
legitimate, unpirated operating sys-
tems for one computer? I must con-
fess to being downright offended by
the right unfriendly message that
came forth the first time I shuffled
operating systems.

V-SPOOL can make a
big difference

I have complained (sometimes pub-
licly) for a couple of years about an
NEC 5530 Spinwriter (Centronics
parallel version) that has groaned
along under the control of WordStar
like a sick duck at about 30 characters
per second, even though I know very
well that the printer should work
much better than that. I have prefer-
red the synergism of Lifeboat CP/M
with WordStar on my favorite TRS-80
over the others and have accordingly
generally used it for WordStar work.

Lifelines/The Software Magazine, Volume IV, Number 4

It has not taken me long, however, in
fiddling with V-SPOOL, to figure out
that a switch to Pickles and Trout
CP/M together with V-SPOOL, even
in its minimal configuration with a 2k
buffer, would clean up the sickly per-
formance of my 5530 and make it
purr like a well-oiled sewing
machine (as indeed it should).

Conclusions

It is this writer's notion that V-
SPOOL is a solid and credible prod-
uct which is a positive addition to the
field of utilities. I am inclined to
recommend this product to anyone
who thinks he needs a little better
printer performance and who thinks
that he may have a little memory to
spare. Furthermore, since only those
of us who use what is affectionately
known as a “TRASH 80" get the “op-
portunity” to buy several operating
systems so that we will have one that
works for every (any?) occasion, I
may even be harsh in griping about
their clumsy software protection
scheme.

1If you own a TI-810 you might be interested to
know that TI has on the market a LQ upgrade
kit for $750, that will give your TI-810 about six
different type styles including two multi-pass
letter-quality styles with a legible lower case
(for a change). The kit consists of a new print
head, a new paper advance motor, and an-
other board to plug in the (hopefully) empty
card slot in the back of the TI-810 card cage. It
also has a 4k printer buffer built-in. I bought
one some months ago and have not been
disappointed.

?Tandy recently replaced the Model 16 with a
Model 16b. We used to think that a computer
was obsolete by the time that it had been on
the market long enough so that it worked.
Here we have a computer that was replaced
before it worked.

3If you can’t understand why I have four ver-
sions of CP/M 2.2 within arm’s reach of my
computer, consider this. My favorite spread-
sheet (Perfect Calc) works only with Lifeboat
CP/M. Lifeboat and WordStar work very well
together (except as noted with a NEC 5530).
Lifeboat does not support double-sided
drives, however, which I have. ATON has a
bankswitched version of CP/M which makes
my CB-80 compiler run 25% faster due to its
track buffering I/O, but causes one of my
favorite editors (VEDIT) to explode in the bank
switched mode but not the standard mode.
ATON blows up WordStar in either mode, if
you attempt to use memory mapping, but will
allow WordStar to struggle along in the
SOROC 120 emulation mode. Pickles and
Trout does not emulate any standard terminal,
and has some other minor, but disagreeable,
personality traits. - |

N

One of my current clients is a small
agency in need of two or three com-
puter work stations. The people who
will use them are fairly typical for
new office or business computer
users, which is to say they are bright,
conscientious, and apprehensive.
These are non-technical folks who
are struggling to hide the fact that
they have strong mixed feelings
about the long-heralded high tech-
nology which is about to appear sud-
denly on their desks. Part of their
problem, of course, is simply the fear
that they won'’t be able to handle the
intricacies of the computer, that they
haven't the aptitude for it, that it will
be difficult. Part of my job, and pre-
sumably yours, is to help such peo-
ple to make the transition as smooth-
ly as possible, and this can best be
done by making the system as ac-
cessible as possible. In a very com-
mon situation like this, having to
teach CP/M as a first step is some-
thing I would often prefer to avoid.
Wouldn't you?

Applications programs are getting
easier to use, but unfortunately for
sales people and consultants, CP/M
is still as opaque to the new user as
ever. Certainly, the basic tools and
procedures can be demonstrated,
written down, and mastered with a
bit of effort. Anyone can handle the
rudiments of STAT, PIP, COPY, REN,
and DIR after a few hours’ time, es-
pecially with talented teachers such
as yourselves, and especially if you
don’'t move too quickly into the re-
finements. But being confronted
with the convoluted and cryptic logic
of CP/M at the same time as having to
learn their first word processor can
make many new users long for their
pencils, scratchpads, and typewrit-
ers. It certainly confirms their expec-
tation that the computer is going to
be a chore to learn. This is why I
prefer to start off with a CP/M “front
end,” which is to say, a program
which operates the operating sys-
tem.

Front end programs for CP/M can do
more than make life easier for the

14

new user. They can also overcome
some of CP/M’s limitations. In my
last column I discussed the need for
better directories and file manage-
ment features, which is one problem
that a good front end program can
solve. The featured program that
month was Trakmaster, which was
very well-conceived but not well im-
plemented. This month’s feature
program, Simplifile, is less ambi-
tious, but accomplishes everything it
sets out to do and works very well
indeed.

</S/implifile

Simplifile is the first offering of
Durant Software, a start-up company
in Berkeley, CA. As its name implies,
this $100 program is designed to
make the file-handling tasks of CP/M
simple. That it does. Among other
things, Simplifile gives you added ID
information on files, allows chaining
of files for multiple operations at a
single stroke, and facilitates the
backup routine. There’s more, so
keep reading. It installs itself very
easily on most popular computers
and terminals, and since the pub-
lisher will cheerfully assist those
with off-beat gear, anyone running
almost any CP/M can use it. For those
terminals with half-intensity capa-
bility, Simplifile makes modest but
tasteful use of it.

The 32K program SECOM is PIPed
onto each diskette from a master
copy. Each time it is invoked, Sim-
plifile comes up with the screen
shown in Figure 1. The cursor ap-
pears in the top three rows, the Disk
Area, which contains disk status in-
formation, a running total on space
left, and disk commands. The first
time SF is invoked on a disk, you
must give the disk a six character ID.
Thereafter, each time SF is called
from CP/M, it queries for the latest
date which you can either give or ig-
nore by hitting RETURN.

Disk commands are executed by
positioning the cursor over the com-
mand and hitting RETURN. For add-

CP+ And Simplifile — Programs
To Operate The Operating Systems

=

ed convenience, you can position the
cursor on any command simply by
typing its first letter. For example, to
change the current drive (and the
files listed in the File Area below)
simply move the cursor to “Cur-
rent:” and hit RETURN and B to log
onto drive B. Similarly, to re-sort the
directory listing according to filetype
instead of filename, simply type “S”
which moves the cursor to “Sort,”
then hit RETURN; the screen flashes
sort options, and you type “T” to
select a sort according to filetype. It’s
much faster than it takes to read
about it.

The rest of the screen below the Disk
Area is the File Area. You move to
and from the two areas with the ESC
key. The Help command or “?” will
display the commands as shown in
Figure 2. The disk commands in the
left column explain the commands in
the Disk Area at the top of the screen,
and the right column explains the
various file commands.

The File Area contains information
about the files on the current drive. If
your file list overflows the screen, ad-
ditional screens of files can be viewed
by hitting N (next screen), and you
can move back by hitting P (previous
screen). T moves the line the cursor
is on to the top of the screen. The list
of files can be sorted according to file
name, file type, or size by using the
Sort command at the top of the
screen. The cursor is moved up and
down through the file lines by use of
the cursor arrows, and action may be
taken on any file by putting the cur-
sor on that line.

When the cursor is on a file, you can
manually enter the date and a de-
scription of up to 42 characters to
help you identify the contents of the
file. If the date being entered is the
same as the current date shown in
the Disk Area, simply enter “ =" and
hit RETURN. You can also take action
upon that particular file by using the
file commands. Thus, you can View,
Copy, Erase, Backup, List, or
Rename any file simply by entering a

Lifelines/The Software Magazine, September 1983

one character command and hitting
RETURN. Nice! With the User com-
mand, you can copy any file into any
user area. Even nicer, you can copy,
backup, or list any group of files sim-
ply by marking each selected file
with “M” and then using the “Mult”
command at the top of the screen.

Viewing with Simplifile is much
nicer than using the CP/M TYPE
utility, because the file is thrownup a
screen at a time, and you can go for-
ward or backward through the file
with the N and P keys. You can also
view .COM and other hex files, beau-
tifully set out with addresses, num-
bered columns, and a column of
ASCII equivalents on the right. Un-
fortunately, you cannot read more
than the first 16 to 18 Kbytes of any
file. It just quits. This is because the
authors conceived of this feature
merely as a utility to allow you to
positively identify a file, whereas I
would tend to use it as a means of
quickly getting to some bit of infor-
mation without loading the file with
my word processor. Fortunately, not
too many of my files are over the
limit, and there exists the possibility
that the authors will eliminate this
limitation in a future enhancement.

Any program can be executed by
pointing at it with the cursor and hit-
ting “X”. You will be queried for
parameters (arguments) which you
can enter if they are needed. Like-
wise, if you eXecute any non-COM
file, you will be queried for the name
of the program which you wish to act
upon. Thus, you can “X” EDITCOM
and enter the name of the text file, or
“X” the text file and enter EDIT. It
works either way. Simplifile comes
with a handy 6K utility called FINE-
TUNE.COM which, among other
things, accomplishes two very im-
portant tasks. First, you can auto-
mate up to five of the most common-
ly used .COM programs — e.g., your
word processor, spread sheet, and
data base — by listing them under
PROGLIST (program list). Then,
whenever you eXecute a data or text
file, the names of the .COM files you
listed will come to the screen with
the cursor on the first one. Simply
move the cursor to whichever COM
file you choose to have act upon the
selected data file and hit RETURN. If
you desire one which is not listed,
put the cursor on “Other” hit
RETURN and enter any .COM file
you like. This is much more conve-

nient than always having to type all
the names in. Second, and here
comes the very best part, when you
use the PROGLIST utility, every time
you eXecute a file it can be made to
automatically update with the cur-
rently listed date. Ilove it! This makes
it very easy to go through a large
directory and identify and backup all
recently modified files all in one
group.

This version, 1.2, works beautifully
without bugs or errors. However, the
error trapping needs work. When at-
tempting to rename anR/O file,I was
thrown out of SF and back to CP/M
by the BDOS error, and the same
thing happens if you try to access a
drive which is not ready. This should
be fixed, and a function should be
added to enable one to change file
status from SF. There are very few
limitations, and it must be noted that
Durant Software is not only friendly
and helpful, they are also eagerly col-
lecting suggestions for improve-
ments from users and planning an
eventual enhancement. For example,
an important prospective feature will
be the ability to format and set up
new disks in a single stroke. It would
also be nice to be able to hook up
with an on-board clock for date
stamps, but at present this is only
possible on IBM-PC, and there are no
plans for expanding in this direction.

Simplifile does not provide any facili-
ty or information for making it
autostart, but anyone who knows
CP/M should have no problem set-
ting this up. One nice feature, which
is undocumented, is that when in-
voking SF you can add parameters to
name the logged-on drive and the
sort order for the file listing. For ex-
ample, SF B T will come up logged
onto drive B: with files sorted accord-
ing to file type. I use this all the time,
but would prefer to be able to per-
manently alter the default options.

In sum, Simplifile is an excellent
utility which offers advantages to
any user, and especially to novices.
The file description feature elim-
inates confusion about what is in
your old files, and this will be a real
advantage to any users who have
large directories, or who accumulate
disks over a period of time, or where
various people put files into the same
system. Any user will appreciate the
way this program facilitates the back-
up routine. Consultants and sales-

Lifelines/The Software Magazine, Volume IV, Number 4

people will especially benefit from
the way Simplifile makes the com-
puter more accessible and attractive
to customers and clients.

——

Sexier screens with CP +

CP+ is a $150 front end program
from Taurus Software in Lafayette,
CA. Tt organizes CP/M functions into
plain English menus and adds extra
features like password, print queue-
ing, file chaining for copy/backup
operations, and more. The program
packaging is extremely slick, as are
the promotional materials. Every ef-
fort is being made to attract and sup-
port computer sales outlets. If the
marketing is as powerful as the pack-
aging, they should be able to over-
come the fact that the product is their
weakest link, and sell it like crazy
anyway.

The sexy packaging continues into
the screen operations of the program
itself, and this is the main, almost the
only, reason I would recommend the
product. I really like the way the
screens work, and there seem to be
dozens of them! A single keystroke
sets them in motion, and they move
like animation, taking full advantage
of highlighting. The screen action is
the program’s strong point, and
should be extremely useful for sales
to first-time users. Whatever system
you are showing will look great —
just the way computer screens in the
movies look — and the customers
will be just itching to get one home
and play with it. That’s just fine. And
while playing with it, they can slowly
transfer their attention to applica-
tions programs, and eventually, like
the ideal socialist state, CP + can just
fade away. Or maybe not so slowly.

As far as actually using CP + goes, it
will make you grind your teeth in
frustration. This is a prime example
of a program which is trapped by its
own relentless and rigid logic. It is
absolutely clear, yet horrible to use.
CP/M operations are meticulously
broken down into options, sub-
categories of options, and sub-sub-
categories. Each has its own screen,
and that’s the problem. Once the
pleasure of watching all those
screens in motion fades, you realize
that you spend a lot of time waiting.
For example, the starting screen
comes up, then you hit ESC to get to
the Quick-Screen lineup of opera-

15 »

tions. Let’s call it QS for short. You
can select any one of 18 possible ac-
tions by entering its number then hit-
ting RETURN. Each action has its
own menu and sub-menu screens
which you must navigate through.
Then when you accomplish that
task, you go back to the QS by hitting
ESC and start the next operation.

The third or fourth time I tried to
copy one file from A to B, then check
the B directory to make sure it got
there, it took me six minutes and an
unbelievable 30 keystrokes, not
counting typing the name of the file,
but by then I was getting good at it.
The first time or two took much
longer. Here’s what you have to do:

1. ESC to the QS for the list of
options.

2. Select 6 (Directory). Wait for
screen to write, wait to fetch
directory.

3. Advance through directory look-
ing for desired file for transfer. CP +
makes you use “+” to advance
through directory screens, a very
awkward shifted key and a poor
choice for a command used so fre-
quently. Directory screens give file-
name and size only, and display only
20 files per screen. You cannot select
files or sort the directory, you just
have to wade through it. Ooops! A
confusion arises. I see that I have
both XD.COM and XDIR.COM, two
similar but very different directory
utilities. Which is which?

4. ESC to the QS.

5. Select * t5 " (File " Pescription
Catalogue). A nice idea; you can
enter descriptive data in the cata-
logue next to any filename in it. Wait
for screen to write, wait to fetch direc-
tory. Use “+” to advance through
the screens. Each catalogue screen
holds only six files, so I have to ad-
vance to the 5th screen to see both of
my file descriptions. Aha! It's
XD.COM that I want.

6. ESC to the QS.

7. Select 14 (Copy Some Files). Wait
for screen to write. Select A (Add
Files To List). Cursor moves to list
area, enter filename XD.COM. Hit
RETURN to accept it, hit RETURN to
accept same name on copy-to side,
hit B to designate copy-to drive, hit
RETURN to indicate done with list.
Select X to execute the copy routine,
hitY to say “Yes, do thisline.” At last,
it’s done.

8. ESC to the QS. Now I want to
check the directory on B to see if I did
it right and got the file copied over.

9. Select 6 (Disk Directory). Wait
for screen to write. Wait for it to fetch
the A drive directory. Select C
(Change Drive). Hit B to change to
the B drive. Wait for it to fetch the B
directory. Use “+” to advance
through screens until I see XD.COM.
It worked! Select C (Change Drive).
Hit A to change to the A drive. Wait
for it to fetch the directory.

10. ESC to the QS and get ready to
start the next job.

What a horrible way to work! If I
could spare any hair, I'd have pulled
some out by this time. I can only
assume (and hope) that someone ex-
pert in the use of this program could
do it faster and with fewer steps, but I
think this will give you the general
idea. By contrast, using Simplifile to
copy or transfer a file is almost as fast
and easy as using CP/M, even for a
veteran hacker. Because of its rigid
and intricate logic, CP+ is nearly as
difficult to learn as the fundamentals
of CP/M, and not nearly so worth-
while. I have similar reactions to their
documentation which, despite its
gorgeous and artistic appearance, is
actually quite obtuse.

The viewing function of CP+ is
alarmingly flawed. Unlike Simplifile,
this program is extremely fussy
about what it will view. If it sees any
non-ASCII characters it throws out
yet another of its graphical displays
and flashes wildly that this is a non-
text file. Unfortunately, quite a lot of

programs, including word-proces-
sors like Spellbinder and Palantir,
pack in a few formatting characters,
and this gives CP+ the fits. So
whereas Simplifile will allow you to
view more than is possible with
CP/M’s TYPE command, CP+ is far
more restricted. And even when you
can display afile, you can only view it
in the forward direction.

Why bother to spend all this time
panning this product? Well, for one
thing, you will probably be seeing
ads for this one, but there’s a much
bigger reason. The major problem
with CP + is so extreme that it makes
an excellent example of an approach
to programming and problem solv-
ing that every programmer should
learn to avoid, and something that
every consultant should beware of in
any program selected for clients. It is
the same problem which afflicts
Select and various others. No pro-
gram should ever allow rigid
adherence to its own logic to usurp
fluidity and flexibility of use. One
should never sacrifice the user’s con-
venience on that particular altar. Be-
ing clear and logical is not a pro-
gram’s highest goal, but merely a
contributing factor to its ergonomic
success. If having to wade through
interminably branching menu
choices is “user friendly” then
beware those programs which will
kill you with kindness.

In sum, CP + is fun to watch but no
fun to use, so I could recommend it
as a good computer sales device, but
for no other reason. My sincerest
apologies to the fine people at CP +.
It is never fun being hard on a prod-
uct, as I am increasingly aware of the
high degree of effort and commit-
ment required to get a baby like this
to market. Sweat, dedication, and
professional talent is reflected in the
extremely high quality of packaging
and in the assemblage of fine market-
ing materials. I just wish I could like
their program better.

DURANT Software

2532 Durant Avenue, No.250

Berkeley, CA 94704

16

TAURUS Software

3685 Mt. Diablo Boulevard, No.251

Lafayette, CA 94549

(continued on page 10)

Lifelines/The Software Magazine, September 1983

) \

MemoPlan is a highly specialized
text editor which can accommodate
from one to seven concurrent or “ac
tive” documents. The documents can
be worked with in round-robin fash-
ion, and portions of two of them can
be displayed on the screen at the
same time. Interactions between the
two screen windows are so well im-
plemented that I felt this was the
single most impressive feature of the
product.

I won't attempt to rate MemoPlan ex-
haustively on subtle points, but just
present here my general evaluation,
based on about 12 hours of use.

User Friendliness: Excellent
Safety: Excellent
Editing Features: Very Good
Printing Features: Fair (but not
elaborately
tested)
Documentation: Excellent
Installation: Good (when
user-installed)

Now let’s look at some of the
details. . . .

MemoPlan, as its name implies, ap-
pears to be geared toward business
office writing tasks. Usage suggested
in the manual includes putting a list
of things to write in one window,
while using the other to actually do
the writing and editing involved. Of-
fice memos would tend to be short
text files, but this editor could handle
asingle file of up to 248K bytes, if you
should wish to use it for such mass-
ive works.

The active documents are “part of”
MemoPlan, until intentionally
discarded by the user. This semi-
permanent storage is handled by
what’s called the “swap file” As
Memo runs, it periodically and
automatically writes the currently-
selected document to its segment of
the swap file. You may also want to
explicitly write your documents to,
and read them in as, ordinary ASCII
disk files.

I found it a little disconcerting at first
that each time I brought up Memo, it
showed me the last screen of the last

document I had been working with
when I had last exited. However, the
target group for this editor may very
likely regard that as one of its most
helpful features.

MP should not be loaded with high-
bit-set document files, but will accept
plain text produced by other editors
(e.g., WordStar non-document files).
I occasionally saw a few inexplicable
reverse video characters crop up on
the Zenith screen when I read in
plain ASCII files, but this didn't hap-
pen often enough to be a serious
problem.

The only difficulties of any note that I
encountered with MP arose while
running its installation program,
CONFIG. I didn’t regard this as a
serious flaw; I did get the editor up
and running. The manual implies
that most users will have the pro-
gram installed by their dealers. Still,
I'd like to mention the problems I
found.

I was sent a review copy of
MemoPlan for 8-bit CP/M micros.
Two very different computer systems
were available to me, and I decided to
install MP on both of them. (Note:
this would be a violation of Chang
Labs end user license agreement, but
was done for the purpose of review
and evaluation only).

The first computer was a Radio
Shack Model II with 128K of bank-
switched memory, four 8” floppy
drives, and the RS Daisy Wheel II
printer. I started out by putting the
MP files on an Aton CP/M disk, but
could never get the install program to
run at all under Aton. I gave up and
installed MemoPlan on a Lifeboat
CP/M disk. The Aton problem was
just with the installation program; I
could boot Aton in drive A and run
my already-installed Lifeboat Memo-
Plan disk in B.

Printer installation appeared to be
easy; the Daisy II was on the menu
(but see comments in the discussion
of Printing Features). I installed the
terminal as ADM-31, as one would
do, for example, for WordStar under

Lifelines/The Software Magazine, Volume [V, Number 4

A Review Of MemoPlan

/

ifeboat CP/M. Eager to see MP, I
brought it up and was soon entering
text. To my dismay, my text was ap-
pearing in reverse video. I soon ex-
ited from Memo, and discovered that
the terminal had been left set for
reverse video, which was intolerable.
I went back and installed for the
ADM-3A terminal, thus dispensing
with reverse video altogether.

I did go back once more to install for
the TRS-80, when I noticed that the
cursor arrow keys were not being
supported, as the manual implied
they would. I had glanced at the Ad-
vanced Configuration Menu, which
had a 'Define keyboard usage’ op-
tion. I hoped I could enable the ar-
row keys by remapping them to
Memo's cursor controls.

I never got anywhere with this; the
CONFIG program always blew up
with the message “Fatal error: can't
open the overlay file.”

I also installed MemoPlan on a
Zenith-89 computer with 64K
memory, 1 on-board 5 1/4” floppy
drive, a 6MB Corvus hard disk, and
the Zenith Z-25AA line printer. In
this case, terminal selection was
easy; Z-19 was on the menu. The
printer wasn’t — it’s an interesting
printer, but few people would choose
it for letter-quality applications.

For printers not on the menu, CON-
FIG offers the choices Plain’ and
"Vanilla, which you might want to try
just to see if one works. I decided to
try for a custom installation. This
begins when you admit to CONFIG
that your printer isn't listed; follows a
fair number of questions about what
your printer can do, and voild, in this
case I soon had the printer installed.
Or partially installed — the custom
installation worked fine for printing
from within Memo, but see com-
ments later in this review for Printing
Features. . ..

The Z-19 screen installation is un-
doubtedly how MP is intended to
look. There is a reasonable use of
reverse video for menus and status
line messages. >

17

The Zenith arrow keys weren’t en-
abled either, and I tried to use the
'‘Define keyboard’ option, but with
the same non-results as on the Radio
Shack.

User interface

The MemoPlan user's manual is
outstanding. It is short, easy to
understand and to use, and attrac-
tively formatted. Command key-
strokes are printed in huge bold let-
ters beside the text which describes
their usage. Both a Table of Contents
and Index are present.

MemoPlan’s menus are attractively
presented on the screen. Selections
have well-chosen mnemonic names.
The small first menu is on the screen
at all times, unless turned off by the
user. Two additional menus may be
called up, giving progressively less
common selections. None of the
menus overwhelms the user with too
much information.

At the bottom of the screen, a status
line tells you the following:

® Name of current document. Called
“NAME-ME” if never written to a
disk file; but changes to user-
selected file name afterwards.

¢ Percentage position of the cursor
in the document: 0% is the top of
the file, 100% is the bottom.

¢ Current text mode; insert mode by
default.

* Forward-Reverse direction toggle
setting.

® “Swapping” message appears
when Memo automatically up-
dates the current document in the
swap file.

MP includes a Help command in its
main menu. It gives information
about a specific key, or you may type
in a word which you want to know
something about. I didn't catch on
immediately that I needed to use all
lower-case for help with command
words. But at least I was told that
“Help about 'PRINT' not
available. . . ”

One of the first things I did with
Memo on the hard disk was to reset
its document parameters to be as
large as possible. It had arrived on
the disk set for five documents and a
maximum of 16K of text storage in the
swap file. The user can set the
number of documents from one to
seven, with a maximum storage of
248K. You might never need that
18

much space for seven documents,
but it’s nice to know you can have it if
you want it.

This is done with a versatile utility
called RECOVER. Re-sizing does
destroy the current documents in the
swap file, but they can be stashed as
plain ASCII disk files, and read back
in after the operation. RECOVER is
impressively bullet-proof; asking it
to run with totally inappropriate
parameters results in a message on
correct usage, and a firm but friendly
return to the CP/M prompt.

The main function of RECOVER is to
restore your swap file if it gets glitch-
ed up by a power failure, accidental
hardware reset while swap file is
open, or whatever. I tested this by
doing a reset on the TRS-80, then
running Memo. A message tells you
the swap file is invalid, and to run
RECOVER. This takes just seconds
with the 16K swap file, and you're
ready to go again.

I also found RECOVER to be useful
for keeping track of how large each
document in the swap file had be-
come, and how much room was left
of the total. All this is given in a sort
of status list on the screen when you
run RECOVER. Also reported is the
number of killed documents which
have been cleared out by the user.
(The usefulness of knowing this isn't
obvious to me.)

Memo will inform you when the
swap file is full. You might then want
to clear out an old document, or
write one or more out to disk and free
up their space. However, the manual
instructions are very good for the use
of RECOVER to increase the size of
the swap file.

Editing features

Overall I found MP’s editing com-
mands to be very good. My only
complaint was a personal one — Ilike
to have the option of reassigning the
cursor controls. And perhaps this
could be done with a working ver-
sion of the 'Define keyboard usage’
part of the install program.

I didn’t care much for MP’s cursor
control keys. The manual depicts
them in a typical-looking diamond
pattern, which is a bit misleading,
since the four keys are in the same
row. A real diamond would be much
easier touse. ...

tK
tH L
1]

(Ed. Note: This configuration is default
on several popular terminals.)

Memo has four different editing
modes. I didn’t find their names to be
especially helpful, except for ‘Over-
write’. I thought that ‘Fill' should
have simply been called “Insert
Mode.” “Justify’ does a sort of word-
wrap at the right margin. ‘Normal’
requires a hard carriage return to end
a line before you reach Column 80.

Memo uses the destructive back-
space or Rubout (ASCII 127) as its on-
ly command to delete a single char-
acter. This will pose something of a
problem on keyboards which lack
this key. The TRS-80 Model II has no
labeled Rubout key, but sends deci-
mal 127 via CTRL‘underline-and-
hyphen’ key. Potential purchasers of
MemoPlan who lack the Rubout key
should check their hardware man-
uals to be sure they have some way to
execute this function. I found that I
could insert blanks around a charac-
ter I wanted to delete, and use MP’s
'Delete Word’ command to get rid of
it, but this was tedious.

A feature of MP which is new to me is
its Forward-Reverse direction toggle.
Its current setting is always given at
the bottom of the screen. It usually
reflects the last cursor-control key us-
ed, but it can be explicitly reset very
simply with 1F for Forward, 1R for
Reverse.

Many of the MP commands have a
dual meaning, depending on this
toggle. Examples: in Forward mode,
*W moves the cursor ahead 1 ‘word’,
while Reverse mode *W moves back
one “word.” (I say “word” because
the action is a little strange: Reverse
Word puts the cursor on the first
character of a word, but Forward
Word puts it at the blank in front of
the first character).

Forward 1B puts the cursor at the end
of the file, while Reverse 1B moves it
back to the beginning of the file.
There are four additional, in-
termediate degrees of cursor move-
ment which are used this way. In-
deed, it seemed that the only feature
which didn't utilize the direction tog-
gle was the *G to Get next document.
You can jump directly from file #3 to
file #4, but not vice versa in One Win-
dow mode. You have to cycle through

Lifelines/The Software Magazine, September 1983

all of the intervening documents,
which takes just seconds to do.

Memos Two Window Mode is
elegantly executed and very conve-
nient to use. When two windows are
selected, the screen is split horizon-
tally, with part of one file displayed at
the top, part of the other at the bot-
tom. To test the use of this feature, I
loaded the top window with a 4K
ASCII file, which was the Table of
Contents for a manual I had been
writing. In the bottom window I
loaded 50K worth of Chapter 3. The
idea was to scroll through both (at
different rates), checking the index
against the text. I was satisfied with
the performance, but wouldn’t want
to do something like that routinely.

The following Two-Window opera-
tions are handled very smoothly:
switching the cursor between the
two files, scrolling the two files with
use of the Forward-Reverse toggle,
moving blocks of text from one file to
the other, allowing the user to
change the size of one window in
relation to the other. Four different
screen allocations are possible, rang-
ing from seven lines for the top file
and 10 for the bottom, to 12 at the top
and nine at the bottom with the
menus turned off.

Memoplan has a convenient Unde-
lete command which restores the last
deleted item — word, sentence,
block, etc. — at the current cursor
position. You couldn’t restore an en-
tire document which you had dis-
carded by using Undelete, but the
Clear command is protected by a
confirm prompt.

Undelete is the basis for MP’s move
and copy functions: an item is
deleted in one place and undeleted
somewhere else. Moving text be-
tween two windows is handled the
same way. You delete the item in one
document, undelete it in the same
spot if necessary, switch the cursor to
the other document, and do an un-
delete there. It’s faster to execute than
to describe.

Setting markers for blocks of text
works well but isn't visually spec-
tacular, 4 Ia the highlighted blocks of
WordStar. Setting just one marker
results in an electronic “bookmark”
that holds your place in the docu-
ment until the next time you want to
locate it quickly.

Find and replace functions are well-

implemented. MP’s Search is the on-
ly one I've personally encounterd
which will match search string
“capital” with found strings ‘capital’,
‘Capital’, and ‘CAPITAL.

The Query Replace has an in-
teresting option called Try it, in
which the substitution is made on
the screen, and then you decide Yes:
leave it changed, or No: go back to
the original version. The search then
continues, so you don’t get to see the
results of your 'No’ response, revert-
ing back to the original, which I
thought would have been more
satisfying.

Printing features

I didn’t spend a great deal of time in-
vestigating MemoPlan’s print for-
matting capabilities, because I didn't
like the way printing is handled.
Print parameters, or options, are en-
tered as a string of switches typed at
the keyboard. Until you had these
memorized, you would have to look
them up in the manual.

Compared to WordStar, where the
user responds to a series of screen
prompts, I found this distinctly in-
convenient. So usually I just hit
Return to get all defaults, so I
wouldn’t have to fool around with
the “option list.”

The print procedure also seemed un-
necessarily slow. Two files, MEMO.
F$$ and MEMO.P$$, are written to
the disk, and there is a final Confirm-
Print prompt, before your document
ever goes to the printer.

The MemoPlan package includes a
separate program called MEMOP
.COM which handles all of the actual
printing. The manual describes di-
rect invocation of MEMOP from

CP/M to print ASClI files. It sounded
slicker than just using TYPE *P, since
you could get title headings on each
page, set tab expansion, and a few
other goodies.

But MEMOP had some annoying
problems when I ran it as a stand-
alone utility, as opposed to invoking
it with #XP from the Memo menu. I
tried direct MEMOP for the first time
on the Z-89, and absolutely nothing
went to the printer. I could send my
ASCII file to the Z-25AA with TYPE
P, or with Memo's 1XP, but not with
MEMOP filename.

I went to the TRS-80 system to test
direct MEMOP there. The Daisy II
printed garble, with missing lines,
incomplete lines, and extra blank
lines in the printed file. A friend com-
mented that stand-alone MEMOP
didn’t seem to be driving the Daisy II
correctly, and suggested re-installing
for the 'Plain’ printer. This solved the
immediate problem, namely of
cleaning up the output from directly
run MEMOP.

Iwentback to the Z-89, re-configured
its printer installation from Z-25AA
to 'Plain, and found that direct
MEMOP then worked in that case
too. I did check to be sure that print-
ing with *XP from within the Memo
editor itself still worked, but then
didn’t pursue the matter any further.

I never felt that the printing facilities
of MemoPlan came anywhere close
to the high standard reached by its
screen operations. After the direct
MEMOP episode, I began to feel even
more strongly that MemoPlan’s
printing features still need a lot of
tweaking up. After all, “memos” are
ultimately destined to become text
on paper, to be distributed around
the office. ... [l

L

T Herrd THE ALIRM, LANG... OO

Lifelines/The Software Magazine, Volume IV, Number 4

19

All you dBASEII' hotshots

are about to get what you

deserve.

You've written all those slick
dBASE Il programs.
Business and personal
programs. Scientific and
educational applications.
Packages for just about
every conceivable informa-

I

tion handling need.

And everybody who
sees them loves them because
they're so powerful, friendly and easy to use.

But that’s just not good enough.

Uh-uh.

Because now you can get the gold and the
glory that you really deserve.

Here's how.

We've just released our dBASE II
RunTime™ application development module.
And it can turn you into an instant

software publisher.

The RunTime module condenses and
encodes your source files, protecting your
special insights and techniques, so you can
sell your code without giving the show away.

RunTime also protects your margins
and improves your price position in the
marketplace. If your client has dBASE II, all
he needs is your encoded application. If not,
all you need to install your application is the
much less expensive RunTime module.

We'll tell the world.

With your license for the dBASE II
RunTime module, we provide labels that
identify your program as a dBASE II applica-

tion, and you get the benefit of all the
dBASE II marketing efforts.

20

WEell also provide additional “how to”
information to get you off and running as a
software publisher sooner.

And we'll make your products part of
our Marketing Referral Service. Besides put-
ting you on our referral hotline, we'll publish
your program descriptions and contact
information in dBASE II Applied, a directory
now in computer stores world-wide.

Go for it.

But we can’t do any of this until we
hear from you.

For details, write RunTime Applications
Development, Ashton-Tate, 10150 West
Jefferson Boulevard, Culver City, CA 90230.

Or better yet, just call (213) dBASE"
204-5570. And get what you
deserve today.

ASHTON-TAIE

©Ashton-Tate 1983.

Lifelines/The Software Magazine, September 1983

Feature Computers And Organizations:

Technology And Administrative Groups, Part One

.

The pundit’s perils

It is with trepidation and a wary eye
towards the long list of predictive
failures cited in a recent Lifelines
editorial that we begin a two-part
series on long-range perspectives of
information technology. Certainly
the hubris of zealous marketing peo-
ple, with their “sound and fury,” is
regrettable when it misleads the end
user, causing him or her to opt for a
system that isn't right for his or her
needs. And if so many “false proph-
ecies” can spring from a brief five- or
ten-year span in the (rapidly evolv-
ing) microcomputer industry, how
can anyone hope to predict long-
range trends in such a volatile area?

Happily, this article avoids the slip-
pery slope of fine-tuned predictive
posturing. It looks not so much at
historic detail, market successes and
failures of operating systems, etc., as
at the more general questions of
what impact new technologies can be
expected to have on organizations. A
related question, what are some
properties of organizations in gener-
al, might also be asked. Answers to
these questions may be found by
1) looking at historical examples, and
2) seeing if changes in organizations
can be related to changes in technol-
ogies on the basis of a dependent or
independent variable relationship
(i.e. the “chicken and the egg”
question).

Answering such questions may, in
turn, allow some coherent crystal-
gazing. (We should note that by “or-
ganizations” we mean both business
organizations and political adminis-
trative groups.)

Looking Backward:
The first 5500 years

At first glance, the answer to the first
question,“what has technology done
for organizations” seems self-
evident. Technology and civilization
have grown up side by side. Right?
Unfortunately, the answer seems
more ambiguous than that.

For instance, it is commonplace in
computer literature to give a brief
history of technology from the inven-
tion of writing, all the way through to
computer and word processor, and
to view the technology as “causing”
change. Looking at history as arough
sequence of inventions is not entirely
inaccurate, but doing this overlooks
the big picture of how complicated
the changes that occurred were.

Many facts contradict, for example,
the simple technological determinist
view of the impact of writing on
history. Some examples: 1) “Civiliza-
tion” itself arose more than 3500
years B.C. in Mesopotamia — before
writing was developed. 2) The tech-
nology of information storage that
was utilized in these early states (a
simple system of clay counters, seals
and containers) may have existed
long before the emergence of these
first full-time, specialized, multi-
tiered administrative organizations.
(See Denise Schmandt-Besserat in
Recommended Readings, below.)
3) Itis a matter of record that another
such administrative group, the larg-
est in the new world, was almost lit-
erally held together by mere “pieces
of string,” by which I mean the Inca
Empire, occupying, at its peak, the
entire west coast of South America,
and incorporating 80 provinces or
states, which kept records on knot-
ted pieces of rope. These peoplerana
government very efficiently, con-
ducting censuses, allocating crop-
lands, and of course, collecting taxes.
All was done without writing, utiliz-
ing only the knotted Quipu records
of vital state information.

Moving into the present, and dem-
onstrating how uncertain the tech-
nological/organizational connection
can be, we can cite Vincent E. Giuli-
ano, a senior member of the informa-
tion systems section of Arthur D. Lit-
tle Inc. Writing about the spaghetti-
like picture that presents itself when
one looks for the relationship be-
tween computers and businesses, he
suggests that the transforming ef-
fects of computer and communica-

Lifelines/The Software Magazine, Volume IV, Number 4

tion technology on office work cause
“A complex set of feedback loops. .

linking economic and social changes,
new developments in information
technology, the widespread applica-
tion of the new technology, and the
introduction of the new office organ-
ization the technology makes possi-
ble” (see Recommended Readings).
(However, Giuliano does feel that
such technology has an important ef-
fect on office work organization.)

Thus the “time-line” school of
“technological change propelling or-
ganizational growth” may well over-
simplify our picture of both the past
and present. This is not to minimize
the impact of technology per se. For
instance, we know that the past cen-
tury has seen the service sector of the
economy overtake and surpass the
agricultural and industrial sectors in
terms of both the size of its labor force
and the dollars generated within it.
This shift in the peopling of in-
dustries has been due largely to the
automating of the “goods produc-
ing” sectors, as well as the interna-
tionalization of the economy. Still it
certainly seems conceivable that
some expansion could have taken
place without new technologies in
the administrative sector. Global
economic neworks already existed
before the beginning of the nine-
teenth century!

Given the above uncertainties of the
connections between technology
and social systems, but assuming we
could predict such things, what sort
of impact might we expect the new
innovations to have on modern social
organization?

Decisions, Decisions:
Some views of complex
organizations, their
history, functions and
growth

Looking at the development of ad-

ministrative organizations can sug-
gest a few possibilities. From a his- p

21

torical perspective, organizations
with full-time specialized adminis-
trators probably developed in con-
nection with their superior ability to
monitor and manage resources. This
enhanced ability may be due to a
number of factors. Some writers have
pointed out that central integration
of production of a variety of goods or
services creates increased efficiency.
And others have suggested that effi-
cient activity coordination may be
the basis for the hierarchical struc-
ture of decision-making organiza-
tions. Along these lines, anthropolo-
gist Gregory Johnson, citing group
dynamics studies made in settings
ranging from small social groups to
large corporations, has suggested
that there is a maximum number of
subordinate units in an organization
that an administrator can monitor ef-
ficiently. Exceeding this maximum
beyond a specifiable range causes
decision performance to deteriorate
increasingly rapidly. Thus more effi-
cient management of resources and
information would be expected to ac-
company vertical and horizontal spe-
cialization of administrative tiers.
This specialization, in turn, keeps
the maximum number of “channels”
monitored to within the limits of effi-
cient performance by the individual.

Whatever the reason for their suc-
cess, there can be little doubt that
once the first complex decision mak-
ing organizations developed, they
out-competed (or were more fre-
quently selected than) the (presum-
ably) less-efficient ones. A factor for
the success of such organizations
may be a tendency for fast growth
because of a potential to efficiently
incorporate groups into a larger or-
ganization than they have got,
rapidly. Thus one worker has noted
an exponential decrease in the num-
ber of autonomous political units in
the world over time. Johnson has
suggested that this trend may be due
to the fact that the linear increase in
the number of levels of a hierarchy
may generate an exponential in-
crease in the potential system size —
this within certain constraints of
operation. Herbert H. Simon, an ad-
ministrative and social scientist, has
suggested a similar pattern of growth
among hierarchical systems in gen-
eral.

To sum up, when complex organiza-
tions first appeared and grew,
growth was closely linked to their ad-

22

vantage in processing information,
coordinating activities, and making
decisions, and also to the intrinsic,
readily-expandable nature of hierar-
chical systems.

The most important limits to
organizational growth, according to
some economic geographers and ar-
chaeologists, may be related on the
one hand to increased transport
costs of serving and administering an
increasingly large area, and on the
other hand, the problems of intra-
organizational communications. Ad-
dressing the second point, Johnson
cites Williamson’s model of control
loss in organizations. Williamson,
writing in the 1967 (vol. 25) issue of
the Journal of Political Economy, sug-
gested that potential organizational
control decreases with an increase in
the number of organizational levels.
This loss is due to information loss
and distortion as the information
travels between levels. Interestingly
and importantly, improvements in
data processing can, he says, mini-
mize this effect. Thus a “stress
point,” a limit to organizational
growth, may be removed with the
development of proper technology.
Here, then, is a point to consider
when evaluating the impact of data
technology.

Itis interesting to speculate how both
geographic (think of the new, long-
distance communications technolo-
gies) and intra-organizational limits
on growth might be minimized by
the advent of multi-tasking, distrib-
uted data processing, on-line pro-
cessing and video text systems. In
fact, it is precisely the removal of hin-
drances to efficiency and growth to
which some writers in the computer
field address themselves.

Looking Forward: A big
impact on small groups
— and others

An example of this view may be seen
in work by C. Roger Smolin. He has
examined the impact of micros from
the pragmatic standpoint of their
uses in business. In his very delight-
ful and readable “How to Buy the
Right Small Business System,” he
describes almost exactly the type of
logistical problems of information
transfer to which Williamson refers.
Noting that moving from the “order-
ly din of the production floor” to the

office area leads one to the incongru-
ous sight of billing, inventory and
payroll systems being run via the
channels of paperwork that are more
characteristic of an earlier age, he
suggests that these channels are im-
perfect indeed. Yet they are summar-
ized and reported to management,
who receives the reports in an “over-
joyed” state. This, because they are a
means to “symbolically represent”
details “in the real world of the pro-
duction floor, the suppliers, the
marketplace,” allowing management
to “see the business” and make
decisions.

According to Smolin, the impact that
small computer systems will make
on such organizations includes the
improvement of this “picture.” Part of
the results of this improved informa-
tion are not immediately perceptible;
these include the “peace of mind”
provided by a well-run business, and
increases in productivity as well as
enhanced opportunity because rec-
ords of payments to vendors, pay-
ments from customers and inventory
available to customers will all be
more accurately represented. More
important in terms of a perceptible
“payoff,” he suggests that small sys-
tems can be used as a TOOL FOR
GROWTH. For example, once the ac-
counts payable system is automated,
there is little difference between hav-
ing 20 customers and 200. It is here,
he feels, that a switch to an
automated system from a manual
one is likely to have the most impact.

Giuliano, like Williamson, refers to
improvements in information flow.
He explicitly points to the reduction
in information “float,” the delay and
uncertainty caused when informa-
tion is inaccessibly caught in the
mail, in the typing stage, or is misfil-
ed. He also points out the potential
for increased productivity because of
elimination of redundant tasks like
retyping and manual filing. And, he
adds, better information flow leads
to better decision making.

The picture that emerges is one of in-
creased productivity, and a tremen-
dous potential for growth, all “enabl-
ed” by better information networks.
While, in the final analysis, “It needs
no ghost to tell us this,” it is hoped
that a somewhat historical and the-
oretical perspective has provided
some food for thought about organi-
zational development, and the im-

Lifelines/The Software Magazine, September 1983

pact technology may have on that
development. While inputs of new
technology need not be “revolu-
tionary,” it seems plausible that,
given the nature of complex organi-
zations, they may well approach that
if they remove significant constraints
on communication and growth.

Our next segment will look at the
many changes going on in the work-
place today as these new systems are
introduced.

Recommended Readings

Giuliano, Vincent E. “The
Mechanization of Office Work,”
Scientific American, September 1982,
Vol. 247, Number 3.

Johnson, G.A. “Organizational
Structure and Scalar Stress” in
Theory And Explanation In Archaeol-
ogy,” Colin Renfrew, Michael
Rowlands, Barbara Abbott Sea-
graves, editors. 1982, Academic
Press, New York.

Simon, H.A. “The Organization of
Complex Systems” in Pattee, H.H.
(ed), Hierarchy Theory: The Challenge
of Complex Systems,” New York,
George Braziller. 1973.

Schmandt-Besserat, Denise. “The

Earliest Precursor of Writing,”
Scientific American, June 1978, p. 50,

In the May 1983 issue, p. 32, New
Versions. . .

WordStar and MailMerge (CP/M-
86) should be 3.3; and dBASE-I186
and PC should be 2.24.

In the July 1983 issue, p. 33, Bugs. . .
The bug is for C-Food Smorgas-
bord 14.

- Lifelines/The Software Magazine, Volume IV, Number 4

Feature PL/I From The Top Down — Chapter Two: Functions

By Bruce H. Hunter

In the last article, we discussed list and edited 1/0, and we looked
at both edited and list input/output techniques. We also looked at
some loop forms, the call, procedures, blocks and the concept of
scope of variables. 1 erroneously stated that we would be covering
edited 1/0 in detail in this article, but in fact that will not occur
for several installments. What will be examined in this article are
declarations, data types, files and built-in functions.

This series of articles is rewritten from my book PL/I From The
Top Down, which is about PL/I Subset G, one of the subsets of
the full set of PL/I. I deliberately take an informal approach in
writing about the PL/I language, but if you are interested in pur-
suing the subject further, I think the best introductory text on the
full set of PL/I is PL/I Structured Programming, by Joan K.

Hughes, John Wiley & Sons, 1979, Second Edition. The compiler
used for the writing of these articles is Digital Research’s PLI-80.

DECLARATIONS AND DATA TYPES

PL/Iis a compiler language. Compiler languages are very
different than interpreter languages, and now is a good
time to discuss the differences between the two in detail.

Interpreter languages

Interpreter languages examine and execute each line of
code before going on to the next line. Because only one
line is executed at a time, an interpreter language has no
way of knowing what is going to happen in the next line of
the program. It never knows what is ahead. Line numbers
or line labels are needed so if you need to use a “goto” the
interpreter will know exactly where it should direct the
program flow. Because interpreter languages have special
symbols that automatically predefine data types and pre-
set storage areas, the user of interpreter languages can be
blissfully unaware of the significance of the various data
types that exist in more sophisticated languages. For ex-
ample, in interpreter BASIC a “string” is designated by a
dollar sign after the variable (such as A$). That is all the in-
terpreter BASIC user needs to know about using a string
variable in programming. What is actually happening is
invisible to the user — A$ tells the interpreter certain
predefined things — the data is a string (type character)
consisting of any number of characters up to a certain
amount allowed (the amount depending on the version of
interpreter BASIC), and the storage required for such is a
predetermined default amount, the parameters of which
also depend on the version of BASIC. Interpreter lan-
guages are handy for learning programming because you
only need to know the “basics” to get started in program-
ming. Also, changes to the code can be made easily. There
is no compilation process required before the program can
be run because interpreters only read one line of code at a
time, so all you do is change the code, save it, type ‘run,

24

/

and you're in business. The disadvantages of interpreter
languages are that they execute code very slowly and they
do not use memory efficiently.

Compiler languages

Compilers are a lot different from interpreters. Compiler
languages know what is ahead because they “parse” (read
each line of the code from the beginning of the program all
the way to the end) several times before the program is
ready to run. To people used to interpreters, the compila-
tion process can be a confusing experience. Let’s look at
what happens when code is compiled in a “typical” com-
piler. (Compilers are relatively standard in the way they
compile code, but there are small individual differences
from compiler to compiler.) Let’s say you have just finish-
ed writing your source code, and now you are ready to
compile it. The first step in the compilation process is ac-
complished by the preprocessor, which follows the in-
structions of the header file in your source code to “in-
clude” any header, defined or redefined functions, or con-
stants. The next step is performed by the compiler proper
which translates the code parsed by the preprocessor into
assembly code. Then the optimizer optimizes the assem-
bly code, making it more efficient. What results is what is
called a “relocatable module,” which is intermediate code.
Finally the linker links the program proper to the specific
library functions called by the program and to any other
modules specified at linkage time to produce the final ob-
ject code. Only after all of this is the program ready to
“run.” And when you change a line of code in a compiler
language, you have to go through the whole process again
before you can run the program! That’s one of the only
disadvantages of compiled code.

Compiled languages do not have symbols like the dollar
sign to designate strings. It is up to the programmer to let
the compiler know everything it needs to know about
each variable. The place to do this in PL/I is in the
“declaration” section of the code. Here each variable is
“declared” (defined) as to its data type and storage class,
because in order to determine the storage needed, the
PL/I compiler needs to know the data type and storage
class of each variable at compilation time. The declara-
tions also let the compiler know what variables are used in
each program block. By parsing the code, the compiler
also determines the duration of use for each variable. This
is a definite advantage of compilers. With this knowledge,
the compiler uses sophisticated routines to determine the
minimum storage necessary, thus enabling it to use mem-
ory very efficiently indeed. Another advantage of compil-
ed code is that it runs very fast because the compiler
knows everything that is going to happen next.

The only other disadvantage of compiler languages, if it
can be called a “disadvantage,” is that you have to learn
about all the data types and storage classes in order to be

Lifelines/The Software Magazine, September 1983

able to use them. In this article we are going to take a look
at some of the data types in PL/I.

Data types in PL/I

PL/I Subset G has a number of data types, such as fixed
binary, float binary (single precision and double preci-
sion), fixed decimal, float decimal (not implemented in
Digital’s PL/I-80), character, pointer, label, entry, file and
bit. This is a lot to bite off in one chew, so we're only going
to cover a few of them in this article — fixed binary, float
binary, fixed decimal, character and file.

Data types for numeric data

Let’s look at the data types for use with numeric data first
because they are pretty straightforward:

Fixed Binary

Fixed binary is used for integers only. The range is from
0to +32767. In systems programs you can get by just fine
with this data type, but for most programmatic applica-
tions you need to allow for a larger range of numbers.
It's interesting to note that until recently, the 8-bit C
compilers available were integer-only versions, and
many sophisticated utilities were programmed in them
(such as MicroShell which was initially programmed in
BDS C). Incidentally, the term “binary” signifies the in-
ternal representation of a number with this data type.
What you see on the screen is a decimal representation
of the binary number stored internally.

Float Binary

Float binary is for very large or very small numbers. PL/I
offers you a significant amount of programming power
in choosing precisely what you want in terms of
numbers to work with. You can opt for single precision
or double precision in type float. As a reference, most
other languages have double precision or single preci-
sion, but few offer you both. For example, CBASIC is
double precision only. C has double precision and
single precision, but computations are done only in
double precision.

Single Precision

In single precision the type float can have a precision of
up to 2 raised to the 24th (1677216), with an exponent of
as much as 38. (The number of significant decimal digits
is about 6.)

Double Precision

In double precision, type float can have a precision of up
to 2 raised to the 53rd (about 15 decimal digits) with an
exponent of as much as 308! That is precise! Double
precision is storage intensive, of course, as it uses twice
as many registers as single precision. Double precision
also slows down execution time significantly. Nothing
comes free!

Not only can you specify double precision or single
precision, you can specify exactly what parameters you
want. For example, the way you express the exact preci-
sion of type float is with a number in parentheses after
the word “float,” like ‘float (15)". The "15’ signifies 2 to the
15th power, which falls within the single precision
range. As far as I know, PL/Iis unique among languages
in offering you this kind of choice in determining the
precision you need because other languages have
Lifelines/The Software Magazine, Volume IV, Number 4

default amounts of precision only. If you type float and
no precision number, PL/I defaults to single precision
(24). If you are in doubt as to the precision you need, just
pick up a handy calculator and input the number of the
precision as the exponent of 2, like y to the x with y as 2
and x as the number in question. If x is 15, the largest
number possible is 2 to the 15th, or 32768.

Fixed Decimal

Fixed decimal has its precision in actual decimal places.
Fixed decimal is like CBASIC'’s or Pascal MT-Plus’s BCD
(binary coded decimal). It is for exact representation of
numbers, like dollars and cents, where truncation and
approximation errors can’t be tolerated. The precision is
15 digits maximum for this data type. Graphically that
looks like $9,999,999,999,999.99, which means you can
carry anumber equal to or less than a penny short of ten
trillion (with change) without getting in trouble!

Declarations with “numeric” data types

Declarations precede each program block in which the
variables are to be used, and they take the following form:

dcl
variable__name data__type
(variablel, variable2, variable3) data__type;

The statement ‘dcl’ (which is short for “declare”) tells the
preprocessor section of the compiler that some declara-
tions are coming up. The variable name (or group of
names) follows with the data type at the end of the line.

Multiple declarations are not only permissible, they are
common and they are also a handy way to demonstrate
the way numeric data types are declared:

dcl
ifixed;
hyp float(24);
(a, b, c) float(30);
amt fixed decimal(7,2);

In the above example, the variable i’ is type fixed binary.
The variable ‘hyp’ is type float binary, single precision.
The variables ‘a, ‘b and ‘¢’ are type float binary, double
precision. The variable ‘amt’ is type fixed decimal with
seven digits using two decimal places.

Data type character and declarations
with data type character

Now let’s look at the data type ‘character, which is used
for alpha data. Strings are alpha data, for example. It’s an
interesting fact that not all languages treat strings the
same way. C and Pascal can only deal with one character at
a time, so strings are dealt with as character arrays (arrays
of type character). PL/I, like BASIC, doesn't have to deal
with only one character at a time, so a group of characters
doesn’t have to be dealt with as an array of characters.
Strings are specific entities in PL/I, and they are treated as
such. In PL/I, when you want to declare a string, you not
only have to specify that you are dealing with type
character, you have to tell the compiler the length of the
string. The length of a string must be declared:

dcl buffer character (254);
In the above example, the string ‘buffer’ is 254 characters p-
25

long, no more and no less. If you forget to specify the
length of the string, the default length is 1. PL/I is very
literal. When you specify character, it gives you one
character!

There is a "varying’ attribute for type character that allows
the lengths of strings to vary as long as a maximum length
is specified, as in the following example:

dcl
name char (32) var;

In the above example, the string ‘name’ is type character
and may be anywhere up to 32 characters long.

Some closing remarks on data types

To put PL/Iin perspective, it has one more data type than
C but twice as many data types as Pascal. Unlike Pascal
and C, PL/I has no provision for creating your own data
type. This does not significantly affect the programming
power of the language, but I point it out as a matter of in-
terest. There are many other data types in PL/I, but with a
data type to handle character data and a data type to han-
dle numeric data, the only other data type you need to
write elementary programs in PL/I is the data type ‘file’.
We will come back to the other data types in PL/I as we go
along, but right now let’s go on to files. Files are not only
another data type, they are a very important concept in
PL/I, so they deserve a whole new heading.

Files

PL/11is called a “file-oriented” language. It not only deals
with files in the ordinary sense, it treats just about every-
thing as a file, including devices like the console CRT, the
keyboard and the printer. This can be confusing at first,
but this feature gives you a great deal of programming
power. All I/O in PL/I is done by way of files. Everything
with a‘put’ ora ‘get’ is afile. Let’s say you want to print the
statement “All I/O is a file in PL/I.” This is the way you do
it. The first thing you have to do is declare a variable with
the data type file, like this:

dcl
line__printer file;

This declaration tells the compiler that the variable
‘line__printer’ is a file. Then a little later in the code the
‘line__printer file is opened, like this:

open file (line__printer) print linesize (80) title ("$lst’);

PL/I wants its files declared (or defined) and then opened.
Here 'line__printer’ has been opened, and “print’ signifies
aprint file. The word ‘linesize’ signifies the option PL/I of-
fers you of setting the line size (the length of the line
before an automatic carriage-return line feed is put in).
Here the line size is set to 80 characters. The 'title’ or name
of the file 'line__printer’ is “$lst’. Here the title of our file is
also the name of the listing device, CP/M’s logical device
(LST:) for the printer. Now at last you can have the line
printer print the statement “All I/O is a file in PL/I” with
this program line:
put file (line__printer) list CAll I/O is a file in PL/1);

This will put to the ‘line__printer file our little statement
“All1/O is a file in PL/1”

26

Right now some of you are wondering about all those
“puts” and “gets” we did before. No one said a darned
thing about files then! That's because PL/I has a couple of
default files: SYSIN (system input), and SYSPRINT (sys-
tem print). They’re automatically open at all times, and a
‘put’ or a ‘get’” without a file assignment defaults to the
CP/M default device (CON:) which is the console. Wheth-
er you do it implicitly or explicitly, the result is the same.
The following two lines accomplish the same task:

put file (sysprint) list ('HI');
put list (HI');

For those of you unfamiliar with logical and physical
devices, this may be a little confusing. Let’s take a brief
look at these terms. A logical device is one that is assigned
by the program or acommand line, hoping that the device
is both there and properly assigned to a physical device. A
physical device is one that is a physical part of the user’s
system such as LPT:, the line printer. These devices are
permanently assigned by virtue of being physically cabled
for the I/O port to the device itself under logical devices
which can be reassigned by the operating system. If you
are still confused, rather than getting bogged down in the
quagmire of physical and logical devices in this article,
refer to any good book on CP/M. The authors Thom
Hogan and David E. Cortesi have written two of the best
CP/M books available.

Consider the following program fragment showing de-
vice file assignment and the use of a file variable:

dcl
output file variable,
(sysprint, print) file;

open file (print) print title ("$lst’);
open file (sysprint) stream print pagesize (0) title
("$con);

put skip edit(
‘output to,

‘1 printer’,

’2 consol¢’,
‘input choice’)
(7 (a)); /* edit 7 alpha lines */
get list (choice);
if choice = 1then
output = print;
else
output = sysprint;

i:aut file (output) list (...)

A file variable and an odd edit statement are new con-
cepts. The file variable allows the output to be directed to
either the screen or the printer. Note ‘sysprint’ had to be
declared explicitly to assign it to the file variable. This seg-
ment shows clearly that all output is file. Let me explain

Lifelines/The Software Magazine, September 1983

what is happening in the edit statement. What has hap-
pened is that there are seven separate lines of string con-
stants. The (7(a)) tells the "put edit’ statement to print
seven strings. The 7 is arepeat factor, one of PL/I’s niceties.
It is like trapping the parameter following it in a “do for 1
= 1to 7” statement. Edited I/O is one of those fastidious
things that PL/I does like FORTRAN, managing its data
into neat columns or rows or whatever is needed by the
I/O statements. Edited I/O is dealt with in more detail in
Chapter 6, Edited I/O Plain and Fancy.

CHAPTER TWO
FUNCTIONS

A function is a form of a procedure that returns a single
value. PL/Thas a large library of functions that you can tap
anytime you wish simply by invoking them programmati-
cally. Incidentally, the full set of PL/I has a monumental
function library. It is so large, it would take a dedicated
computer writer 20 years to catalog them with any degree
of completeness. Seriously, the huge size of PL/I's func-
tion library is probably one of the discouraging factors in
learning the full set. The function library of Subset G is
much more manageable, and Digital Research’s version (a
subset of Subset G) is about on par with the function
library of a good C compiler, with all the functions you
reasonably need.

Let’s define some terms:

Arguments or Actual Parameters
Variables or constants that are passed to a procedure
or function by the calling statement.
call sum(a, b);

Parameters or Formal Parameters
The values received by the procedure or function.
sum: proc (a, b);

Let’s look at the following program fragment to examine
this concept more closely:

hypotenuse = pythagoras(side__1, side__2);

pythagoras:
proc (a, b,) returns (float);
dcl
(a, b, ¢) float;

¢ = sqrt (a**2 + b**2);
return (c);
end pythagoras;

The call to ‘pythagoras’ on the first line passes the
arguments, ‘side__1 and ‘side__2/ to the function "py-
thagoras’ which receives the parameters ‘a’ and 'b’. ‘Sqrt’ is
also a function, but because it is a part of PL/I's library, it is
called a built-in function. The passing of arguments and
receiving of parameters is the heart of maintaining local
variables and reaching sections of the program that are ex-
ternal to the main body of the code.

PL/I has built-in functions for arithmetic processing;
math functions for trig, hyperbolics, logs, and exponen-
tiation; string functions; conversion functions; condition
Lifelines/The Software Magazine, Volume IV, Number 4

functions for error handling; and a handful of
miscellaneous functions. The built-in functions have only
to be invoked and passed an argument to return a value.
The program statememt ‘c = pythagoras (a,b)’ passes the
arguments ‘a’ and ‘b to the function sqrt’ and the value
returned is stored in the variable ‘. Note that arguments
can be constants, variables, expressions or even the value
returned from another function:

¢ = pythagoras (3,4)

¢ = pythagoras (a,b)

¢ = pythagoras (a-5, b+3)
¢ = sqrt (abs(a))

Built-in functions

Here's a look at most of the built-in functions you have at
your command in PL/I-80.

Arithmetic Functions

abs
Returns the absolute value of a constant, variable, or
expression passed to it.
a = abs(-128) {128}

ceil
Returns the smallest integer greater to or equal to the
argument.
a = ceil (9/5) {2}
divide
Divides its first argument by its second to the
precision of the third and the scale of the fourth.
(Precision is the total number of significant digits,
scale (factor) is the number of decimal digits).
Example:
a = divide (62.4,12**34,3)
Returns: 0.036

floor

Returns the largest integer not exceeding the
argument.
Example:
a = floor (9/5)
Returns: 1

max
Returns the larger of two arguments.
Example:
a = max (4, —128)
Returns: 4
min
Returns the smaller of two arguments.
Example:
a = min (4, —128)
Returns: —128

round
Rounds off its first argument to the right (+) or left
(—) of the decimal by the number of places specified
by the second argument.

Example:
a = round (1/3,3)
Returns: .333
sign
Returns 1 if the argument is positive, —1 if negative
and 0if 0.
27

trunc
Returns the integer portion of an argument (like
BASIC’s INT() function).
Example:
a = trunc (9/5)
Returns: 1

Mathematical Functions

The mathematical functions, most of which are
transcendental, are pretty well self-explanatory.

acos arc cosine, result in radians
asin arc sine in radians

atan arc tangent in radians

atand arc tangent in degrees

cos cosine from radians

cosd cosine from degrees

cosh hyperbolic cosine , radians

exp returns a value of e raised to the argument
log returns the natural log of the argument
log2 returns log base 2 (handy for binary

expressions)
logl0 returns log base 10
sin returns the sine, radians

sind sine, degrees

sinh sine, hyperbolic, radians

sqrt returns the square root of the argument

tan returns the tangent of the argument given in

radians
tand tangent, degrees
tanh hyperbolic tangent, radians
String Functions

When a language is asked to perform string manipula-
tion, it either falls apart or shows its power. FORTRAN,
HPBASIC and others die when it comes to strings. PL/I,
on the other hand, has a few powerful functions that will
do about anything in the way of string handling.

Concatenation is not a function, but I'm throwing it in
anyway:
new__word = 'horse’ || ‘feathers’
bad__word = "horse’ !! ‘expletive’
The pairs “||” or “!!” are concatenate operators.
Here are the string functions:

collate
This is sort of a unique function. It has no param-
eters but returns the entire ASCII character set in
ascending order. You may never use this one, but it
sure sounds impressive!

index
This is one of the more powerful and commonly
used string functions. It has two arguments, both
strings. It returns an integer value showing the posi-

tion of the leftmost occurrence of the second string
in the first.

Example: full_name =] S Bach’;

position = index (full__name, Bach’)

Returns: 5
(The “sister” function to index’ is the "verify’
function, which is at the end of the list of string
functions.)

length
This function returns the length of the string used as
an argument.

substr
The ‘substr’ (substring) function is perhaps the most
heavily worked of all the string functions. It has a
string as the first argument followed by one or two
integer values. It returns a new string made from the
old, beginning at the position specified by the first
integer, and (optionally) to the length of the second.
Example:
new__word = substr ("horsefeathers’6,7)
Returns: feather

translate

This is about as easy to explain as a late payment.
The "translate’ function takes three arguments, all
string. The third argument is optional and if not
used, is assumed to be the entire ASCII collate
sequence. The ‘translate’ function goes through the
first string a character at a time, replacing each char-
acter with a character from the second argument
corresponding to the character in the third argu-
ment. You think I wrote that just to screw you up!

Example:

translate (‘cat; gdo), "tca’)

Returns: dog

You know there are a million good uses for this func-
tion just waiting to be discovered. . ..

verify
This function takes two strings as its arguments and
returns the position of the first leftmost non-
occurrence of the second string.
Example:
verify ('Sam Slade’,” ')
Returns: 1

You can also create your own functions and add them to
the PL/I function library via the PL/I Librarian. Here is a
handy function I created to strip leading blanks of num-
bers after they have been converted to string. It is a very
practical function, and you might want to add it to your
library:
convert:
proc (number) returns (char(15));
dcl
(number, position) fixed,
(string, string__out) char (15) var;

string = chr (number);
position = verify (string, *);
string__out = substr (string, position);
return (string__out);

end convert;

The ‘convert’ functions receives the parameter
number, an integer, declared fixed. It is converted to
character by the function ‘chr()” which converts it to

Lifelines/The Software Magazine, September 1983

string but leaves a few blanks in the front for the sign
and so forth. The problem is to strip the leading
blanks. The “verify’ function gets the position of the
first non-occurrence of a blank. Again it tells where
the first character is that is not the same as the
character(s) in the second string. The ‘substr’ func-
tion returns a new string ‘string__out’ starting at the
“position” of the first non-blank, and continuing
until the end of the string. The ‘convert’ function
then returns a blank-free alpha representation of the
number passed to it as an argument.

Could the ‘convert’ function have been written with the
‘index’ function? Not easily. It would have to specify what
“character” to look for, 1 thru 0.

Conversion Functions

Data conversion could and should be a chapter in and of
itself. PL/I has an entire set of rules on data conversion
that have to be understood to do any but trivial conver-
sions. In any conversion from one numeric type to an-
other (or a conversion from numeric to character), the
number is first converted internally to character. In the
conversion it is padded to the left with a minus sign (-) if
it is negative, and it is also padded with three blanks. For
example:

128 converts to “ 128"
—128 converts to “ —128”

Remember our programming tool, the ‘convert’ function?
It was created to get around this padding feature of the
language.

When converting from one numeric type to another, PL/I,
having first converted to character, now completes the
conversion by its own rules. I will try to cover them pain-
lessly. First we will cover numeric conversion functions:

binary

This takes the form

binary (string, precision)
or the form

binary (expression, precision)
If the expression is type float binary, the result
returned is also type float. Anything else will have
binary return fixed. If the string or expression is
decimal then precision is mandatory. Otherwise it is
optional.

decimal
This takes the form
decimal (string, int, int)
or
decimal (expression, int, int)
asin
decimal (amount, 9, 2)
The two integers are scale and precision. If no preci-
sion is given, then there will be none (no ‘decimal
places’). Scale can be anything from 1 to 15 binary
places. The result of the conversion will be fixed
decimal (or binary coded decimal).
fixed
This one is a trick. If it has a character or a fixed
decimal argument it returns fixed decimal. Anything
else returns type fixed binary. Its form is
fixed (string, scale, precision)
or fixed (expression, scale, precision)
Lifelines/The Software Magazine, Volume IV, Number 4

Precision (number of decimal digits) is optional and
will be 0 if left out.
float
Straightforward, the ‘float’ function returns a type
float binary number from an argument that may be
either string or an expression. The precision is
optional.
Example:
float (string, precision)
or
float (expression, precision)
The remaining conversion functions are:
ascii
Remember the ‘collate’ function? It gets used here.
Any number, 1 to 128, passed to the ‘ascii’ function is
returned as its ascii character equivalent.
Example:
character = ascii(number);
The number is found in the collate sequence by its
position. The MBASIC equivalent of ‘ascii’ is
"CHRS()-
bit
This takes the form
bit (string,length)
or
bit (expression, length)
It converts the string or arithmetic expression to a bit
string. ‘Length’ is optional and if used the bit string
will have its length.

character or chr
The ‘character’ function takes a string or an expres-
sion and converts it to character. It has an optional
length

chr (exp, length)

which gives a character of specified length, almost.
NOTE: Whenever length is used, the length
returned will in fact be determined by the
compiler as explained in the language man-
ual under conversion rules in the chapter
under “Assignments and Expressions.”

rank
The ‘rank’ function is the flip side of the “ascii’ func-
tion. It takes as an argument a character and returns
its ascii number. Its BASIC equivalent is ASC().

unspec
This is an important function. The “unspec’ function
takes as an argument an expression of word length
(16 bits or less) and returns the contents of the
memory address of the expression as a bit string.
Unspec can be used as a “pseudo” variable. By that I
mean that it can be used on both sides of an assign-
ment (only ‘substr’ and “unspec’” have this privilege).
Let’s use the example of a function to return upper-
case alphabet characters to illustrate this:

upper__case:
proc (character__in);
dcl
(character__in, character__out) char (1);
if character__in >= ‘a’ & character__in <= 'z’ then
unspec (character__out) =
unspec (character__in) & "11011111'b;
else >
29

character__out = character__in;

return (character__out);
Short, sweet and heavy! The character passed to
‘upper__case’ as a parameter is checked to see if it is
an @, a 'z’ or anything in between. If it is, then PL/I
demonstrates its ability to go “down and dirty” to
system level, to the address of the input character
performing a logical and on the contents of the
address with 1101 1111. All uppercase characters have
the third bit of the first (most significant) nibble set
to 0.

Anding it with 1101 1111 will take a lowercase char-
acter which will have the third bit set to 1 and set it
to 0.

01100001 ‘a’

11011111 logical and

01000001 A

PL/I has the ability to function at system level, although
perhaps not as compactly as C or as its sister language
PL/M. Nevertheless, PL/I does some pretty amazing
things at systems level, as the “unspec’ function demon-
strates. Pointers are one of the most powerful tools in pro-
gramming at systems level or any other level, and they will
be covered later in detail.

Condition Functions

To keep programs from falling on their faces, it is
necessary to get into an area of programming called excep-
tion processing. PL/I runs a program until an interrupt is
encountered. When encountered, if an “enable” is not
provided, the program will belly up and die. The condi-
tion functions are the “enables.”

Way back in files we quickly covered the endfile condi-
tion. Let’s look at it again:

on endfile (prog.dat)
goto store__file__length;
doi = 1to 32767;
read file (prog.dat) into (dummy) keyto (i);
end; /*do */
store__file_ length:
file__length = i;
This tool, the above block of code, reads the file and stores
its length. Without the endfile function, the program
would have given an ‘end of file error” and terminated.
The ‘endfile’ function smoothly moves the program exe-
cution to the next executable line.

Similarly the ‘oncode’, ‘onfile’ and ‘onkey’ functions aid in
keeping program control. They work in conjunction with
the “signal” statement.

oncode
The ‘oncode’ function is a function which
returns the most recent runtime error.
Example:
on error
put skip list ('error no ’, oncode());
Returns: a fixed (int) number.
onfile
The ‘onfile’ function returns the file name for which
the most recent endfile or endpage was signaled.

onkey
The ‘onkey’ function is used with keyed records (key
files). This function returns the key (as character)
that caused the program to go into an error
condition.

These on “conditions” are probably as clear as the L.A.
smog to you right now. Hopefully they will become more
lucid in the chapter on error processing.

Miscellaneous Functions

addr
This low level function returns the address of the
variable passed to it as a parameter. It is invaluavle
in pointer dependent routines. For example, to get
the pointer to a data buffer, you do this:
data__pointer = addr(data__structure);

Note: The following functions, ‘dimension’, "Thbound’ and
‘Ibound’, deal with the bounds of arrays. When an array is
declared, the bounds (limits) are specifically defined. If a
lower bound is not specified, it is assumed to be 1.

dimension
This function takes the following form:
dimension (array__variable, integer);
It returns an integer giving the extent or range of the
variable, like this:
array__variable(integer)
or more simply put, it gives the number of elements.

hbound
The form
hbound (array__variable, integer)
receives
array__variable (integer)
and it returns the upper bound of the dimension
integer.

Ibound
Used like 'hbound’, the 'Ibound’ function returns the
lower bound of the dimension integer.

null
The 'null’ function is used with pointers and based
storage. It gives a zero or null value to a pointer. In
practice it is used to show that the list (or other form
of data structure) has reached its end. The null
signals termination of the list.

The above functions are those resident in the PL/I version
marketed by Digital Research. Their version is a subset of
PL/I Subset G. Subset G has a substantially larger func-
tion library, and the full set has a library that is exponen-
tially larger. For lack of a better word let us say the full set
library is elephantine. This enormous function library
may well be a detriment to PL/I as a popular language
because, traditionally, students resist learning a library
(and therefore a language) as large as this. The smaller
PL/I-80 library is a convenient size in that it is adequate to
perform just about all normal programming tasks without
being so large as to discourage learning.

The next installment of this series on PL/I will get into pro-
gram structure, writing style and all those programming
necessities, like branching and decision-making, that
make programming fun and functional. [

Lifelines/The Software Magazine, September 1983

Letter to the Editor

I have just finished typing and assembling ERAQ as pub-
lished in Lifelines last September. After I got all of my self-
inflicted errors out, it ran like a charm.

The enclosed rearrangement of your code eliminates the
trailing comma after the R/O symbol of a file that is “read
only” but not “system” (see FILEA.EXT below). Note the
change in destination of the JZ instruction on the fifth line
of code in addition to the rearrangement of the other lines.

Also, ASM doesn't like “ MVIE, —1 " in your “CNVRT:"”
instruction. It assembles okay but gives a “V” (value) error
message. MAC works okay; no error messages. [didn't try
RMAC or M80. They're at work and I'm on vacation. With
ASM I just substituted “ MVI E, OFFH ” which got rid of
the error message.

This is from your original ERAQ.ASM:

DISP7: MVI £
CALL OUTPUT

LDA ROFLG ; print R/O symbol?
ORA A

Jz DISP4 ; nope

LXI D, RO

CALL STROUT print read/only symbol

after file name

DISP4: LDA ROFLG ; if printed R/O, then
; printcomma
ORA A
Jz DISP8
MVI Bille?
CALL OUTPUT
DISP8: LDA SYSFLG
ORA A
Jz DISP5 ; print system symbol?
LXI D, SYS

CALL STROUT yes, print it after file

, hame

DISP5: MVI E7) ; close symbol string
CALL OUTPUT

It gives this output:

A>ERAQFILE?”

FILEA EX (R/O,) Erase this file? N

FILEB EXT (R/O,SYS) Erase this file? N

FILEC EXT; (SYS) Erase this file? N

FILED EXT Erase this file? N

0O files erased.
This is how I modified ERAQ.ASM:

DISP7: MVI E, ("
CALL OUTPUT

; open symbol string

: determine if R/O symbol should be printed

LDA ROFLG ; check R/O status
ORA A ; setflags

JZ DISP8 ; fileis not read only
LXI D, RO ; fileis read only

CALL STROUT print R/O symbol after

; file name

- determine if SYS symbol should be printed

DISP8: LDA SYSFLG ; check SYS status
ORA A ; setflags
Jz DISP5 ; file is not a system file

Lifelines/The Software Magazine, Volume IV, Number 4

LDA ROFLG ; see if R/O symbol was
; printed

ORA A ; setflags

Jz DISP4 ; R/O wasn't printed, so
; acommaisn’t needed

MvI Ex ; R/O was printed, so

printacomma
CALL OUTPUT

DISP4: LXI D, SYS ; print SYS symbol
CALL STROUT

DISP5: MVI E=) ; close symbol string
CALL OUTPUT

It gives this output:

A>ERAQ FILE?*

FILEA EXT (R/O) Erase this file? N

FILEB EXT (R/O,SYS) Erase this file? N

FILEC EXT (SYS) Erase this file? N

FILED EXT Erase this file? N

0 files erased.

It's not that much of an improvement, but it isn’t that hard
to do either!

Please keep the articles coming. I think I already know
more about CP/M than I care to (if I want to keep my sani-
ty), but it’s by figuring out how programs like yours work
that I learn more when I want to. |

Don Weisman
Anchorage, Alaska

Tis and Technigues

by John S. Coggeshall

CB-80's CALL statement is completely different from
CBASIC's: its argument must be a user-defined function,
not an address. For programmers who have invested a lot
of code in the CBASIC convention but wish to convert to
CB-80, here is a way to circumvent CB-80’s requirement
and allow transfer of control to an arbitrary address.

Add the following to the main program:
DEF XFER$(ADDR%)

EXTERNAL
FEND

and replace 'CALL Address%’ with 'CALL XFER$(
Address%).

Assemble the following into a module compatible with
LKB80, to be linked to the main program:

PUBLIC XFER$

XFERS$:
POP HL ; Get return-addr, adjust stack
EX (SP),HL ; Swap it with transfer-addr
; (ADDR%)
JP (HL) ; Pass control to ADDR%,
; leaving return-addr on stack
END

Consider this a temporary patch. It may be more efficient
to reassemble the old code and link it to the main CB-80
program. It may even be appropriate to rewrite the as-
sembly routines to take advantage of the new standard by
getting their arguments off the stack. But now you have a
choice. B

Product Status Reports

New Products
INFORMAX
Abacus Data
1920 San Marco Boulevard

Jacksonville, FL 32207

This electronic file manager offers
high speeds, simple screen-driven
operation for data storage, retrieval,
calculations and reporting. It is user
friendly. Up to 14 different data types
and formats can be used including:
alphabetic, numeric money, phone,
date and time, etc. Even phonic
searches are supported, allowing re-
trievals even with incorrect spelling.

There is no limit on the number of.

files or on the number of math opera-
tions performed within a record.
Each file can contain up to 65,000
records and each record can have up
to 50 items or fields. Expansion from
one INFORMAX capability to an-
other merely requires purchasing the
new product for the price differntial.
All data and applications are trans-
portable to higher levels.

Requirements: 8- or 16-bit systems
with Z80, 8085, 8086, CP/M-80,
CP/M-86, TurboDOS, Mmmost and
dpc/OS (MS-DOS, PC-DOS,N-Star
and MPM version to be released
soon.)

Price: INFORMAX 5 — $395, IN-
FORMAX 10 — $595, INFORMAX 15
— $795, INFORMAX 20 $995

PCT-100

Method Systems Inc.
19751 S. Lakeshore Blvd.
Euclid, OH 44119

The PCT100 is a configurable in-line
RS-232 protocol and data translator,
which allows existing software/hard-
ware interfaces to be made compati-
ble and provides system-level en-
chancements. Two full-duplex RS-
232 ports are provided, each con-
figurable from 50 to 19.2K BAUD.
Ports are jumper selectable for data
set or data terminal operation. Data

32

and protocol information is trans-
lated in real time by an internal pro-
cessor that asynchronously executes
a translation algorithm for each port.
Translation algorithms are stored in
non-volatile EEPROM, which can be
write-protected using an external
“learn/run” switch. PCT100
algorithms and port configurations
are entered using a built-in editor.
The algorithms are coded in MSI'’s
Commmunications Translation
Language (CTL). Programs can be
easily entered and edited from any
ASCII device, including download-
ing from a host computer.

Price: PCT-100-ASM (Stand Alone
Device)—$339

PCT-100-PCB (Assembled & Tested
PC Board)—$289

STUDENT RECORD SYSTEM

Single Source Solution
2699 Clayton Rd.
Concord, CA 94519

This file management system aids
class management of students and
their grades. The STUDENT REC-
ORD SYSTEM has a multiple of
menu-selectable functions to aid the
instructor and can keep track of 10
separate grades for 100 students, and
automatically computes the mean
and standard deviation for each
graded assignment. Grades on up to
10 assignments may be sorted.

Requirements: CP/M, 8080, Z80, or
8085 or UCSD Pascal 32K min. 43K
rec.

THE SENSIBLE SOLUTION
BOOKKEEPER

O’Hanlon Computer Systems
11058 Main Street 225
Bellevue, WA 98004

This program includes simple, yet
complete accounts receivable, ac-
counts payable, and general ledger
capability. The more sophisticated
The Sensible Solution Bookkeeper
Plus adds payroll applications to the
package. For example, invoices, pur-
chase orders and other reports can
contain up to 384 fields from as many
as 10 different files. The Sensible
Solution Management Package in-
cludes an inventory control system
that monitors cost, turn-over, profit
and sales, along with sales force
tracking. It also includes sales order
entry programs for entering and
changing orders, creating inventory
“pick lists,” and developing and
printing of invoices. A similar pur-
chase order entry capability is also
provided to print purchase orders,
record receipts into inventory and
check invoices. Other capabilities of
the Sensible Solution accounting
packages include file and record
locking for multi-user operating
systems.

Requirements: CP/M, MP/M,
MSDOQOS, DPC/OS, TurboDOS,
MmmOST.

Price: Sensible Solution DBMS and
Programming Language — $695,
Bookkeeper — $495, Bookkeeper
Plus — $595, and Management —

Price: $89.95 $895.
PROTEX MULTED
Single Source Solution CompuDraw
(for address see above) 1227 Goler House
Rochester, NY 14620

This text formatter provides a variety
of utilities related to outputting text,
including repetitive letters, mailing
lists, merging external files, special
print effects as will as the usual fea-
tures such as headers and footers,
justification and hyphenation.

Requirements: CP/M
Price: $99.50

This program searches, edits, prints
and manipulates text in multiple files
without requiring the user to indi-
vidually operate each file. It may be
used to change or search for the same
text entry consistently in a large
number of document files, or to
change the name of a variable in
many program modules in different

Lifelines/The Software Magazine, September 1983

files. Itis user friendly. Search modes
include options such as upper/lower
case equivalence, wild card charac-
ters, and searches restricted by col-
umn position. It can also search for
blank lines, or lines not containing a
specified text. Text modification op-
tions include global changes, the
facility to swap words or strings, as
well as the option to search and
modify specific column positions.
Other features include over-write
and insert modes. MULTED may also
be used to produce listings of one or
more files with a single command,
complete with file name headings,
pagination, manual or automatic
paper feed control, optional line
numbering and dating. Such listings
may be produced on the console,
printer or into a disk file. Further,
MULTED can optionally produce a
log of activity, and direct it to the con-
sole, printer or a disk file. MULTED
works by accepting English-like com-
mands from the console, or from a
disk-file. The latter allows produc-
tion of command files for regularly
performed operations. It then exe-
cutes these commands on the files
whose names are specified by the
user at the console or from a disk-file,
possibly using wild card characters
in each specification. When any in-
put is required from the console,
MULTED issues appropriate user-
friendly prompts; similarly any ab-
normal conditions that arise are
reported on the console using clear
explanatory messages. Other fea-
tures supported by MULTED include
automatic maintenance of .BAK files,
alternating between drives for out-
put files, tab expansion or compres-
sion, and upper/lower case transla-
tion.

Requirements: CP/M, 8080, Z80,
32K, CDOS
Price: $59

VoiceDrive

SuperSoft
PO. Box 1628
Champaign, IL 61820

ScratchPad with VoiceDrive allows
the user to operate the program by
speech. This includes all commands
and full data entry. The ability to give
vocal commands does not hinder the
ability to use typed commands. Ex-
amples of use include: presentation
which require “hands off” control,
Non-typist operation, hands-off data

entry and retrieval, and handicap-
ped use and training. VoiceDrive is a
complete software interface that
stands between the voice recognition
hardware and application software.
It performs two major functions: 1) It
performs the basic console and vocal
Input/Output, and 2) It translates
the spoken instructions into binary
codes.

Requirements: PC-DOS version —
128K

Price: ScratchPad with VoiceDrive —

$495.

LOAN ANALYZER

Simple Soft
480 Eagle Drive, Suite 101
Elk Grove, IL 60007

This program is an effective tool for
analyzing a mortgage or loan. Sev-
eral professionally formatted reports
present concise and tailored analy-
sis. Calculations are included to
show complete amortization sched-
ules, effective interest rates, interest
paid between dates, the impact of
loan charges and the effects of an ear-
ly loan termination. The program
calculates unknown variables such
as loan amount, loan term, loan pay-
ment and ballon payments. LOAN
ANALYZER is the newest addition
to the QUIKCALC line of financial
tools.

Requirements: VisiCalc or
SuperCalc

Price: $99.95 H

New Books

Crash Course in Digital Technology

Howard W. Sams & Co., Inc.
4300 West 62 Street

PO Box 7092

Indianapolis, IN 46206

Crash Course in Digital Technology,
by Louis E. Frenzel, Jr.,is writtenin a
programmed learning format using
brief informational frames and fre-
quent self-tests; it is well-adapted to
both personal learning and class-
room instruction. Itis alearning tool,
rather than a reference, and is well-
illustrated with photographs,
diagrams, and examples. With Fren-
zel's typically easy-to-read style,

Lifelines/The Software Magazine, Volume IV, Number 4

Crash Course in Digital Technology
covers what “digital” means, how it
represents real-world phenomena,
the devices used in handling data,
how these devices perform logical
operations, how these are combined,
and more. The instruments used to
troubleshoot digital circuits are also
discussed.

Computer Selection Guide

Para Publishing
PO BOX 4232-2
Santa Barbara, CA 93103-0232

Computer Selection Guide, Choos-
ing the Right Hardware and Soft-
ware: Business-Professional-Per-
sonal, by Dan Poynter, proves to be a
short course in computers so you will
understand what you are getting in-
to, checklists so you are sure to con-
sider every important function and
feature, and a source book so you can
find what you want. A special bonus
chapter shows how to set type with a
word processor or computer.

Word Processing and Information
Processing

Para Publishing
(see above address)

Word Processing and Information
Processing, by Dan Poynter, tells
what these new machines are, de-
scribes how they work, shows how
you can benefit from them, translates
the new “computerese,” and pro-
vides numerous buying tips.

Before You Buy A Computer

Crown Publishers, Inc.
One Park Avenue
New York, NY 10016

Before You Buy A Computer, by
Dona Meilach, is a handholding
guide based on the author’s research
of the marketplace. It is a guide to
buying your first computer and is
designed for the layman who doesn'’t
know what questions to ask and
might be intimidated by a first
meeting with a computer sales-
person. Whether you shop for your
computer tomorrow or three years
from now — for you personal or of-
fice use — Before You Buy A Com-
puter will provide you with research
methods that will never be out-of-
date. Along with 30 black-and-white
>
33

photos and drawings, there are
chapters with assignments requiring
you to keep popping in and out of
stores until you're ready to pass a
computer literacy course with flying
colors. Promotional material pre-
pared by Crown's publicity depart-
ment is available.

New \ersions

SuperSoft C COMPILER FOR
CP/M-80

SuperSoft

1713 S. Neil Street
P.O. 1628
Champaign, IL 61820

The new release is syntactically com-
patible with UNIX version 7 C, and
supports such features as long in-
teger functions and double floating
point functions (including trigono-
metric functions). An extensive list of
library functions is provided with
source code.

SuperSoft C is a multi-pass compiler
which produces highly optimized
code, making it possible to avoid
assembly language coding for most
tasks. The compiler is fast in both
compilation and execution. Many
UNIX compatible functions have
been included allowing the porting
of source between UNIX C and
SuperSoft C with few, if any, source
changes.

Price: $275, for CP/M-80 version;
$500 for other versions.

MAIL 80™

Pegasus-Basis Software, Inc.
670 International Parkway
Suite 100

Richardson, TX 75081

This new release features an installa-
tion program which configures the
system for a variety of microcom-
puters and video terminals. The li-
brary includes terminal characteris-
tics for ADDS, Televideo, Xerox,
Soroc, Hazeltine, Zenith and others.
In addition, almost any terminal can

be installed by answering the
prompts which ask for the needed
control sequences.

Price: $295.
NEW VERSIONS
500 RS S 3.24
MEMORY/SHIFT
(1m0 5% 0,010 TR A v2.0
BSTAM-86 (for CP/M-86 DEC
RAINDOW).. Fi-teo e i v4.6
FLOAT-87 (for LATTICE “C” and
BIRRIC 86) . Ty o v1.0
b NN T v1.0
UNIVAIR series 9000 Demo’s:*
DENIPAT: G2 - of ettt 207
e R S A S 2.07
RURSILE . o 2,07
DEGATSTINME: & o S0 s 20
LATTICE “C” Compiler for
s K v1.04/1.25

*will run under CP/M-86 if customer has
CBASIC-86

STOK SOFTWARE, INC.

Humanizing the

Computer

Put your knowledge of your office environment into your computer so
that your personnel will be properly guided in your absence.

STOK PILOT is a control language that allows easy development of a
menu driven environment as well as an on line instructional utility for any
CP/M or MP/M application. It can guide the user through an entire
process without requiring the user to enter cumbersome system com-
mands, hence making the system transparent to the user.

STOK PILOT can chain to any “COM" file program, or series of
“"COM" files, and regain control when the last program ends. This, and
other unique features make it easy to design complete tumkey systems.

Disk and manual - $129.95. Manual alone - $14.95.

PROF. EASY -
WE LOST THE
MASTER FILE!

THE

R P A s
Stok Software Inc.

27+, 17 West 17th St.
@ New York, NY

10011

212/243-1444

RANDOM
HOUSE

ELECTRONIC
THESAURUS”

$140.00

NO PROBLEM. WE'VE BEEN
USING BACKREST. WE'LL
JUST RESTORE IT

=) __ |BackRest"

BACKREST INTELLIGENTLY
BACKS UP ANY HARD DISK TO
FLOPPY DISKS AND ALLOWS
SIMPLE RESTORATION LATER,

¢ Incremental and Full backup.
e True copying of random files.
e Split large files if necessary.

* Migrate or delete selected files.
o Automatically restore bad files.
* Print Management reports.

* Requires CP/M 2.2, CP/M 3 or MP/M.

Hard Disk
Backup,
Restore
- and more!

$99.95

commands in memory.

SuperDO & SuperSUB - $29.00
SuperDO allows the CP/M operator to type a string of commands that will
execute one at a time. So you can walk away for a while and let your
computer do its thing. Example:
A>DO ASM PROG 1; LOAD PROG 1; ASM PROG2; LOAD PROG2;DIR

SuperSUB is an enhanced SUBMIT command that will run on any stan-
dard CP/M 2.2 system. It runs faster than SUBMIT because it buffers the

Random House and the House design are TM of Random House, Inc. CP/M - MP/M are
TM of Digital Research, Inc.

Dealer inquiries invited.

Lifelines/The Software Magazine, September 1983

Editors Note: We hope you will write in
‘and give us information about your users
\group or computer club. Our Users
Group Corner is designed to help you
find computer clubs in your area or new
clubs that your existing club can ex-
change information with.

CBUG

I Joe Butler

1 3208 Magicwood Circle

' Sacramento, CA 95827

' This is for C users. They also publish
a bi-monthly newsletter of twenty or
thirty pages and include a diskette of
software. The cost is $20 a year for six
issues.

 CBNews
' Software Magic

11669 Valerio Street —213
'North Hollywood, CA 91605
Their charter is to bind together any
and all information of use to the
myriad users of Digital Research’s
compiled CBASIC. They want to
- spread the word about CB-80, about
 its bugs and its features and, in gen-
eral, to make available all new infor-
mation on CB-80. The newsletter is
' $12 for 12 issues.

Ferox Products Users Group

1701 North Fort Myer Drive 6FL
Arlington, VA 22209

This group is for experienced and in-
-experienced users alike. Members
learn from each other’s successes
- and frustrations in using Ferox prod-
‘ucts. The users group will also pro-
'vide a wealth of information for
members on related topics such as
compatible software and new hard-
' ware devices available. Finally, the
' users group will provide a forum to
discuss product enhancements and
other matters that can later be
 presented to Ferox for follow up. A
' new group is forming in New York

City.

J Manhattan Micro

' c/o William Wahlin

' 144 West 86 Street

 New York, NY 10024

- This group is for anyone interested in
IBM-PC. The location presently is

- the Bramson ORT Technical School
at 44 East 23 Street, 8th floor,
Classroom 2. Our meetings are usu-

Users Group Corner=—

ally small, and those present at a
meeting will usually determine what
they want to talk about, be it hard-
ware, software, assembly language,
graphics, or whatever. Occasionally
we have a speaker. There are club
diskettes of programs which we com-
pile from various sources, sometimes
containing the work of our members,
other times holding programs we
have obtained from bulletin boards.
These are a popular product. Dues
are $15 per year.

C Users Group

Box 287

Yates Center, KS 66783

The C Users Group is open to all C
users. We began as the BDS C Users
Group and thus much of our library
and discussion centers on that com-
piler. We hope, though, to expand
and grow as the use of C expands and
grows. We are seriously interested in
the adaptation of our library to other
compilers and operating systems
and we encourage all persons with a
serious interest in C to join and par-
ticipate. Ownership of BDS C is |
definitely NOT a prerequisite of |
membership.

CPMUG

1651 Third Avenue

New York, NY 10028

The complete CPMUG™ catalog,

which consists of nearly 100 vol- | i

umes, is available for $10, prepaid to
the United States, Canada, and Mex-
ico; $15, prepaid to all other coun-
tries. (All checks must be in U.S. cur-
rency drawn on a U.S. bank.)

The following description is of
Volume 84, one of CPMUG’s most
popular volumes:

NUMBER SIZE

Program for checking CRCs of files
......................... CRCKLIST.084
CRCKs of files on this disk

084,17 2ie e L ATRAL B MODEM?7.DOC
Documentation for MODEM program
(from CP/M UG Vol. 79)
08420:00 e MODEM76.LIB
Macro library used with MODEM 7.65
084.3 70, .o BRE: o MODEM?76.SET
Instructions for “hot-patching” MODEM

>

Lifelines/The Software Magazine, Volume IV, Number 4

36

08494 63K ke MODEM?765.ASM
Macro assembler source code for MODEM 7.65
084’5 . ik T 10K .= MODEM765.COM
Object code of MODEM 7.65

0B86..... ...-F 18K .35 = SEQIO22.LIB
Macro library used with XMODEM 5.0

0847 o587 o BKe G i XMODEM47.DOC
Documentation for XMODEM program

084.8: .0 ot 49K:. XMODEM50.ASM

Assembler source code for XMODEM 5.0
0831907 L seos AK S0 XMODEM51.FIX
Notes on a bug fix for XMODEM

Note: MODEM program requires assembly with
Digital Research MAC macro-assembler.
XMODEM may be assembled with ASM.COM if
the “logging” feature is disabled, otherwise MAC
is required for assembly.

Software in the library, obtainable ex-
clusively on diskettes, is available for
a prepaid media and handling
charge, as follows:

FORMAT DESTINATION
8" IBM U.S., Canada, Mexico—$13
8" IBM All other destinations—$17
North Star/Apple U.S., Canada, Mexico—$18
North Star/Apple All other destinations—$21
KAYPRO II Same price as Apple II.
PLEASE CLEARLY SPECIFY THE FORMAT
YOU WANT WITH YOUR ORDER

Change of Address
Please notify us immediately if you
move. Use the form below. In the section
marked “Old Address,’ affix your
Lifelines mailing label—or write out your
old address exactly as it appears on the
label. This will help the Lifelines
Circulation Department to expedite
your request.

New Address:

NAME

COMPANY

STREET ADDRESS

qary STATE

ZIP CODE

Old Address:

NAME

COMPANY

STREET ADDRESS

ary STATE

ZIP CODE

Oops!

For those of you who were about to
throw your microcomputers out the
window because you couldn't get
Steven Fisher’s listings (“Auto-Start
Your CP/M,” June 1983, and “Take

Control,” July 1983) to work, STOP!
Several figures were incorrectly
printed in the text. Read on for the
correct listings.

June 1983 issue

cCP

underscored:

A>A:SYSGEN

July 1983 issue

A>DDT CONTROL.COM
NEXT PC

0100 0200

- S0101

- 0505

-21.

- S0114

- 00 01

- 00 OC

- 00 .

- G0000

A>SAVE 1 FORMFEED.COM

Figure 2 — Proper BIOS Implementation For Auto Start

MSIZE EQU 62 ; Size of system in K
BIAS EQU (MSIZE-20)*1024 ; Offset to minimum 2.2
CCP EQU BIAS + 3400H ; Base of CCP
BDOS EQU CCP + 0806H ; Base of BDOS
BIOS EQU CCP + 1600H ; Base of BIOS
GOCPM MVI A, 0C3H ; JMP instruction
LXI HWBENT ; BIOS Warm Boot Entry
STA 0001H
SHLD 0001H ; Warm Boot linked
Lx! H,BDOS ; BDOS Entry
STA 0005H
SHLD 0006H ; BDOS linked
LXI B,0080H ; Default Buffer
CALL SETDMA

Figure 4 — Inserting an Auto-Start Command in the

By using the standard utility programs supplied with your CP/M system,
you can create your own command to be used when your computer is
first turned on. For instance, to have your computer automatically use
the command “A:AUTO"” (06 41 3A 41 55 54 4F 00), just type what is

Source Disk? (press RETURN to skip): A
Insert Source Disk in A, then press RETURN when ready
Destination Disk? (press RETURN to skip): <cr>

select which device is controlled
(02=console, 04 = aux, 05 =list)
(a period stops memory substitution)
(enter the command length and text)

(stop entry with a period)
(reboot, leaving program in memory)

Lifelines/The Software Magazine, September 1983

e Now dBASE Il is made easy with Quickcode by Fox &
Geller. QUICKCODE is a program generator, @ computer program which writes com-
puter programs.

FAST AND SIMPLE

With QUICKCODE you can generate a customer database in 5 minutes. Its that
fast. All you have to do is draw your data entry form on the screen. It's that simple!

NO PROGRAMMING REQUIRED

QUICKCODE writes concise programs to set up and maintain any type of
database. And the wide range of programs cover everything from printing mailing labels
and form letters, to programs that let you select records based on your own requirements.
There are even four new data types that are not available with dBASE Il alone.

YOUR CONTROL

And since you work directly with your information at your own speed and
your own style, you maintain complete control. Telling your computer what to do has
never been so easy.

QUICKCODE, by Fox & Geller. Absolutely the most power-

ful program generator you've ever seen. Definitely the
easiest to use.

Ask your dealer for more information on QUICKCODE and all the other

exciting new products from Fox & Geller. Fox &GELLER

Fox & Geller, Inc.Dept. LIF 001 604 Market Street Elmwood Park, N.J. 07407 (201) 794-8883

QUICKCODE trademark of Fox & Geller, Inc
OBASE Il 15 3 trademark of Ashton-Tate

_._Esmm;\._.smmo:in_.m z_nnnn_:mz ...,.. .. ‘madnmwﬁoﬂaﬁaa
1651 Third Ave., New York, New York 10028 | _ -, g L

o

_, . EXFTRATION u»q_u. 12,83

S R) oo o

